Skip to main content
Log in

Kinetics and Mechanism of Cr(VI) Reduction in a Water Cathode Induced by Atmospheric Pressure DC Discharge in Air

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The process of reduction of Cr6+ ions (solution of potassium dichromate, K2Cr2O7) in a water cathode was studied during a DC discharge in air. The concentration range of Cr6+ was (5.7–19) ×10−5 mol/l and discharge current range was 20–80 mA. Cr6+ ions were shown to be reversibly reduced under a discharge action. The equilibrium degree of reduction increased with increasing initial concentration of the solution at fixed discharge current. At fixed initial concentration the reduction degree increased with increasing discharge current. The reduction degrees so obtained were 0.34–0.84. A kinetic scheme of the processes taking place in a solution was proposed. The calculated data obtained as a result of application of this scheme described well the experimental results on Cr6+ kinetics. The main processes of Cr6+ reduction and Cr3+ oxidation were revealed. HO ·2 radicals and hydrogen peroxide were shown to be responsible for Cr6+ reduction whereas ·OH radicals and O2 molecules provide the reverse process of Cr3+ oxidation to Cr6+. The mechanism of action of phenol additives improving the process efficiency is discussed. The efficiency of phenol action as a radical scavenger was shown to be determined with its mass-transfer to the reaction area rather than chemical reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kimbrough DE, Cohen Y, Winer AM, Crelman L, Mabuni CA (1999) Crit Rev Environ Sci Technol 29(1):1–46

    Article  CAS  Google Scholar 

  2. Owlad M, Aroua MK, Daud WAW, Baroutioan S (2009) Water, air. Soil Pollut 200(1–4):59–77

    Article  CAS  Google Scholar 

  3. Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Chem Eng J 236:348–368

    Article  CAS  Google Scholar 

  4. Locke BR, Mededovic Thagard SM (2012) Plasma Chem Plasma Process 32(5):875–917

    Article  CAS  Google Scholar 

  5. Tatarova E, Bundaleska N, Sarrette JPh, Ferreira CM (2014) Plasma Sour Sci Technol 23(6):063002

    Article  CAS  Google Scholar 

  6. Grinevich VI, Kvitkova EY, Plastinina NA, Rybkin VV (2011) Plasma Chem Plasma Process 31(4):573–583

    Article  CAS  Google Scholar 

  7. Liu Y (2009) J. Hazard Mater 168:992–996

    Article  CAS  Google Scholar 

  8. Ke Z, Huang Q, Zhang H, Yu Z (2011) Environ Sci Technol 45:7841–7847

    Article  CAS  Google Scholar 

  9. Jamrǒz P, Greda K, Pohl P, Zyrnicki W (2014) Plasma Chem Plasma Process 34(1):25–37

    Article  Google Scholar 

  10. Bobkova ES, Rybkin VV (2015) Plasma Chem Plasma Process 35(1):133–142

    Article  CAS  Google Scholar 

  11. Mededovic Thagard S, Takashima K, Mizuno A (2009) Plasma Chem Plasma Process 29(6):455–473

    Article  Google Scholar 

  12. Ivanov VM, Figurovskaya VN, Shcherbakova YI (2013) Mosc Univ Chem Bull 68(4):191–195

    Article  Google Scholar 

  13. Langford KE, Parker JE (1971) Analysis of electroplating and related solutions. Robert Draper Ltd, Teddington

    Google Scholar 

  14. Bobkova ES, Sungurova AV, Rybkin VV (2013) High Energy Chem 47(4):198–200

    Article  CAS  Google Scholar 

  15. Malik MA (2010) Plasma Chem Plasma Process 30(1):21–31

    Article  CAS  Google Scholar 

  16. Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82(1–3):189–207

    Article  CAS  Google Scholar 

  17. Zhang J, Chen J, Li X (2009) J Water Resour Prot 1:99–109

    Article  CAS  Google Scholar 

  18. Bobkova ES, Shikova TG, Grinevich VI, Rybkin VV (2012) High Energy Chem 46(1):56–59

    Article  CAS  Google Scholar 

  19. Bobkova ES, Shikova TG, Rybkin VV (2012) High Energy Chem 46(2):141–142

    Article  CAS  Google Scholar 

  20. Bobkova ES, Smirnov SA, Zalipaeva YV, Rybkin VV (2014) Plasma Chem Plasma Process 34(4):721–743

    Article  CAS  Google Scholar 

  21. Shutov DA, Smirnov SA, Rybkin VV (2014) High Energy Chem 48(6):391–393

    Article  CAS  Google Scholar 

  22. Shutov DA, Ivanov AN, Isakina AA, Rybkin VV (2013) Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 56(8):25–30 (in Russian)

    CAS  Google Scholar 

  23. Gangal U, Srivastava M, Gupta SK (2010) Plasma Chem Plasma Process 30(2):299–309

    Article  CAS  Google Scholar 

  24. Singh R, Gangal U, Gupta SK (2012) Plasma Chem Plasma Process 32(3):609–617

    Article  CAS  Google Scholar 

  25. Kim YH, Hong YJ, Baik KY, Kwon GC, Choi JJ, Cho GS, Uhm HS, Kim DY, Choi EH (2014) Plasma Chem Plasma Process 34(3):457–472

    Article  CAS  Google Scholar 

  26. Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, Ohkubo T, Kocik M, Mizeraczyk J (2011) Plasma Sources Sci Technol 20(3):034010

    Article  Google Scholar 

  27. Sharpe PHG, Sehested K (1989) Radiat Phys Chem 34(5):763–768

    CAS  Google Scholar 

  28. Al-Sheikhly M, McLaughlin WL (1991) Radiat Phys Chem 38(2):203–2011

    CAS  Google Scholar 

  29. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Engelwood Cliffs

    Google Scholar 

  30. Brisset J-L, Pawlat J (2016) Plasma Chem Plasma Process 36(2):355–385

    Article  CAS  Google Scholar 

  31. Brisset JL, Benstaali B, Moussa D, Fanmoe J, Njoyim-Tamungang E (2011) Plasma Sources Sci Technol 20(3):034021

    Article  Google Scholar 

  32. Bobkova ES, Krasnov DS, Sungurova AV, Rybkin VV, Choi HS (2016) Korean J Chem Eng 33(5): 1620–1628. doi:10.1007/s11814-015-0292-7

    Article  CAS  Google Scholar 

  33. Grabowski LR, Van Veldhuizen EM, Pemen AJM, Rutgers WR (2006) Plasma Chem Plasma Process 26(1):3–34

    Article  CAS  Google Scholar 

  34. Bubnov AG, Burova EY, Grinevich VI, Rybkin VV, Kim J-K, Choi HS (2006) Plasma Chem Plasma Process 26(1):19–30

    Article  CAS  Google Scholar 

  35. Motohashi N, Saito Y (1993) Chem Pharm Bull 41(10):1842–1845

    Article  CAS  Google Scholar 

  36. Parvulescu VI, Magureanu M, Lukes P (2012) Plasma chemistry and catalysis in gases and liquids. John Wiley, Germany

    Book  Google Scholar 

  37. Rappoport Z (2003) The chemistry of phenols, 2 vol set. Wiley, Germany

    Book  Google Scholar 

  38. Streit Wieser A, Taft RW (2007) Progress in physical chemistry. Wiley, Germany

    Google Scholar 

  39. Lukes P, Locke BR (2005) J Phys D Appl Phys 38(22):4074–4081

    Article  CAS  Google Scholar 

  40. Grymonpre DR, Finney WC, Locke BR (1999) Chem Eng Sci 54(15–16):3095–3105

    Article  CAS  Google Scholar 

  41. Thomas JK (1965) Trans Faraday Soc 61:702–707

    Article  CAS  Google Scholar 

  42. Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q (2003) Plasma Sour Sci Technol 12(4):533–538

    Article  CAS  Google Scholar 

  43. Tomisawa S, Tesuka M (2007) Plasma Chem Plasma Process 27(4):486–495

    Article  Google Scholar 

  44. Liu Y, Jiang X (2008) Plasma Chem Plasma Process 28(1):43–52

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the RFBR Grant, project number 14-02-01113 A. Part of this work was performed under the COST Action MP1101 and was supported by the Grant LD 12066 financed by the Ministry of Education, Youth and Sports of the Czech Republic. Part of this work was supported by Ministry of Education and Science of the Russian Federation (the project N 4.1385.2014/K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Rybkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutov, D.A., Sungurova, A.V., Choukourov, A. et al. Kinetics and Mechanism of Cr(VI) Reduction in a Water Cathode Induced by Atmospheric Pressure DC Discharge in Air. Plasma Chem Plasma Process 36, 1253–1269 (2016). https://doi.org/10.1007/s11090-016-9725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9725-2

Keywords

Navigation