Skip to main content

Advertisement

Log in

Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The chemical interaction between non-thermal plasma species and aqueous solutions is considered in the case of discharges in humid air burning over aqueous solutions with emphasis on the oxidizing and acidic effects resulting from formed peroxynitrite ONOO and derived species, such as transient nitrite and stable HNO3. The oxidizing properties are mainly attributed to the systems ONOO/ONOOH [E°(ONOOH/NO2) = 2.05 V/SHE], ·OH/H2O [E°(·OH/H2O) = 2.38 V/SHE] and to the matching dimer system H2O2/H2O [E°(H2O2/H2O) = 1.68 V/SHE]. ONOOH tentatively splits into reactive species, e.g., nitronium NO+ and nitrosonium NO +2 cations. NO+ which also results from both ionization of ·NO and the presence of HNO2 in acidic medium, is involved in the amine diazotation/nitrosation degradation processes. NO +2 requires a sensibly higher energy than NO+ to form and is considered with the nitration and the degradation of aromatic molecules. Such chemical properties are especially important for organic waste degradation and bacterial inactivation. The kinetic aspect is also considered as an immediate consequence of exposing an aqueous container to the discharge. The relevant chemical effects in the liquid result from direct and delayed exposure conditions. The so called delayed conditions involve both post-discharge (after switching off the discharge) and plasma activated water. An electrochemical model is proposed with special interest devoted to the chemical mechanism of bacterial inactivation under direct or delayed plasma conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Locke B, Sato M, Sunka P, Koffmann M, Chang JS (2006) Electrohydraulic discharges and non-thermal plasma for water treatment. Ind Eng Chem Res 45:882–905

    Article  CAS  Google Scholar 

  2. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang Youbi G, Herry JM, Naitali M, Bellon-Fontaine MN (2008) Chemical reactivity of discharges and temporal post discharges in plasma treatment of aqueous media. Example of gliding arc discharge treated solutions. A review. Ind Eng Chem Res 47:5761–5781

    Article  CAS  Google Scholar 

  3. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:1–28. doi:10.1088/0022-3727//42/5/053001

    Article  Google Scholar 

  4. Joshi R, Mededovic-Thagard S (2012) Streamer-like electrical discharges in water. Part I fundamental mechanisms. Plasma Chem Plasma Process 33:1–15

    Article  Google Scholar 

  5. Joshi R, Mededovic-Thagard S (2012) Streamer-like electrical discharges in water. Part II environmental applications. Plasma Chem Plasma Process 33:17–49

    Article  Google Scholar 

  6. Graves D (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001–263043

    Article  Google Scholar 

  7. Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous chemistry and bacterial effects from air discharge plasma in contact with water: evidence of a pseudo second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019. doi:10.1088/0963-0252/23/1/015019

    Article  Google Scholar 

  8. Kamgang Youbi G, Herry JM, Brisset JL, Bellon-Fontaine MN, Doubla A, Naitali M (2008) Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia Alvei inactivation by Plasma Activated Water. Appl Microbiol Biotechnol 81:449–457

    Article  CAS  Google Scholar 

  9. Naitali M, Kamgang Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL (2010) Combined effects of long time chemical species during microbial inactivation by atmospheric plasma treated water. Appl Environ Microbiol 76:7662–7664

    Article  CAS  Google Scholar 

  10. Kamgang Youbi G, Herry JM, Meyheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naitali M (2009) Microbial inactivation using plasma activated water obtained by gliding electric discharges. Lett Appl Microbiol 48:13–18

    Article  CAS  Google Scholar 

  11. Naitali M, Hnatiuc B, Herry JM, Hnatiuc E, Bellon-Fontaine MN, Brisset JL (2009) Decontamination of chemical and microbial targets using Gliding electrical discharges. In: Brelles-Marino G (ed) Biological and environmental applications of gas discharge plasmas. Nova Science Publishers, New York

    Google Scholar 

  12. Obradovic B, Kozakova Z, Vyhnankova E, Dojcinovic B, Krcma F, Kuraica M (2015) Comparison of liquid and gas phase plasma reactors for decoloration of azo dyes. In: Canal C, Aparicio N, Labay C, Buxadera J, Ginebra MP (eds) Proceedings of the 2nd annual meeting “Electrical Discharges with Liquids for Future Applications” COST action TD 1028, Barcelona 23–26 Feb. 2015, pp 72–72. ISBN 978-84-606-5797-3

  13. Verreycken T, Schram D, Leys C, Bruggeman P (2010) Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Sci Technol 19:045004. doi:10.1088/0963-0252/19/045004

    Article  Google Scholar 

  14. Tresp H, Hammer M, Weltman KD, Reuter S (2013) Reactive species treatment by atmospheric pressure plasma jet of liquids. In: Krcma F (ed) Proceedings of the COST action TD 1028, WG4 workshop, Bratislava 29/30.10.2013, Kick-off meeting, Bratislava, pp 45–45

  15. Traylor M, Pavlovich M, Karim S, Hait P, Sakayama Y, Clark D, Graves D (2011) Long term antibacterial efficacy of air plasma activated water. J Phys D Appl Phys 44:472001. doi:10.1088/0022-3727/44/47/472001

    Article  Google Scholar 

  16. Miyahara T, Ochai S, Sato T (2009) Interaction mechanism between a post-discharge flow and water surface. EPL 86:45001. doi:10.1209/0295-5075/86/45001

    Article  Google Scholar 

  17. Ursache M, Stroici C, Burlica R, Hnatiuc E (2012) The evolution of aqueous solutions properties exposed to a glidarc discharge. In: IEEE conference SS04 pl.04. RD-006475. Proceedings of OPTIM 2012: 13th international conference on electrical electronic equipment, Braşov, Romania, pp 15–15

  18. Brisset JL, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674

    Article  CAS  Google Scholar 

  19. Naitali M, Herry JM, Hnatiuc E, Kamgang Youbi G, Brisset JL (2012) Kinetics and bacterial inactivation induced by peroxynitrite by electric discharges in air. Plasma Chem Plasma Process 32:675–692

    Article  CAS  Google Scholar 

  20. Zeldovich YB, Sadovnikov PH, Frank-Kamenetskii DA (1947) The oxidation of nitrogen by combustion. Shelef M (Trans). Academy of Sciences of USSR, Institute of Chemical Physics, Moscow, Leningrad

  21. Aithal S (2012) A comparative study of NOx computation methods coupled to quasi-dimensional models in SI engines. In: Proceedings of the ASME 2012 internal combustion engine division fall technical conference ICEF 2012, Sept 23–26, Vancouver, BC, Canada, 92012 pp

  22. Halliwell B, Evans P, Whiteman M (1999) Assessment of peroxynitrite scavengers in vitro. In Parker L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap. 35. Academic Press, London

  23. Koppenol W (1998) The basic chemistry of nitrogen monoxide and peroxonitrite. Free Radic Biol Med 25:385–391

    Article  CAS  Google Scholar 

  24. Wise D, Houghton G (1968) Diffusion coefficients of neon, krypton, xenon, carbon monoxide and nitric oxide in water at 10–60 °C. Chem Eng Sci 23:1211–1216

    Article  CAS  Google Scholar 

  25. Ringbom A (1963) Complexation in analytical chemistry. Wiley, New York

    Google Scholar 

  26. Buehler R, Staehelin J, Hoigné J (1984) Ozone decomposition in water studied by pulse radiolysis. 1-HO2/O2 and HO3/O3 as intermediates. J Phys Chem 88:2560–2564

    Article  CAS  Google Scholar 

  27. Velikonja J, Bergougnou M, Castle G, Cairns W, Insulet I (2001) Co-generation of ozone and hydrogen peroxide by dielectric barrier AC discharge in humid oxygen. Ozone Sci Eng 23:467–478

    Article  CAS  Google Scholar 

  28. Malquist PA, Agren H, Roos B (1983) The lowest states of the O +3 ion. Chem Phys Lett 98:444–449

    Article  CAS  Google Scholar 

  29. von Sonntag C, Schuchmann HP (1991) The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical methods. Angew Chem Int Ed Engl 30:1229–1253

    Article  Google Scholar 

  30. Praneeth V, Neese F, Lehnert N (2005) Spin density distribution in five- and six-coordinate FeII-porphyrin NO complexes evidenced by magnetic circular dichroism spectroscopy. Inorg Chem 44:2570–2572

    Article  CAS  Google Scholar 

  31. Romero N, Radi R, Linares E, Augusto O, Detweiler C, Mason R, Denicola A (2003) Isomerization of human hemoglobin with peroxynitrite. Isomerization to nitrate and secondary formation of protein radicals. J Biol Chem 278:44049–44057

    Article  CAS  Google Scholar 

  32. Pietraforte D, Salzano A, Scorza G, Marino G, Minetti M (2001) Mechanism of peroxynitrite interaction with ferric hemoglobin and identification of nitrated tyrosine residue. CO2 inhibits Heme-catalyzed scavenging and isomerization. Biochemistry 40:15300–15309

    Article  CAS  Google Scholar 

  33. Kalinga S (2006) Interaction of peroxynitrite with myoglobin and hemoglobin. Can J Chem 84:788–793

    Article  CAS  Google Scholar 

  34. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. IUPAC Publication, Marcel Dekker, New York

    Google Scholar 

  35. Anthelman M, Harris F (1982) The encyclopedia of chemical electrode potentials. Plenum Press, New-York

    Book  Google Scholar 

  36. Armstrong D (1998) Thermochemistry of N-centered radicals. In: Alfassi Z (ed) N-centered radicals. Wiley, Chichester

    Google Scholar 

  37. Stanbury D (1989) Adv Inorg Chem 33:69–138

    Article  CAS  Google Scholar 

  38. Wardman P (1989) J Phys Chem Ref Data 18:1637. doi:10.1063/1.555843

    Article  CAS  Google Scholar 

  39. Augusto O, Miyamoto S (2011) Oxygen radicals and related species. In: Pantopoulos K, Schipper H (eds) Principles of free radical biomedicine, vol 1, chap 2. Nova Science Publishers, New York

  40. Bohle D, Glassbrenner P, Hansert B (1996) Methods Enzymol 269:302–311

    Article  CAS  Google Scholar 

  41. Jones CW (1999) Applications of hydrogen peroxide and derivatives. RCS Clean Technology Monographs, Cambridge

    Google Scholar 

  42. Balley C, Gordon R (1938) Trans Faraday Soc J 34:1133–1138, cited in: Schumb W, Satterfield C, Wentworth R (1986) Hydrogen peroxide. University Microfilms International, Ann Arbor, Mich

  43. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328

    Article  CAS  Google Scholar 

  44. Kleiner KE (1953) Zhur. Obshchei Khim 22:17–23

    Google Scholar 

  45. Cabelli D (1997) The reactions of HO2/O 2 radicals in aqueous solution. In: Alfassi Z (ed) Peroxyl radicals. Wiley, Chichester

    Google Scholar 

  46. Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–240

    Article  CAS  Google Scholar 

  47. White CR, Patel RP, Darley-Usmar V (1999) NO oxide donor generation from reactions of peroxynitrite. In: Packer L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap 31. Academic Press, London

  48. Elliott KAC (1932) Oxidation catalysed by horseradish- and milk-peroxidases. Biochem J 26:1281–1290

    Article  CAS  Google Scholar 

  49. Halfpenny E, Robinson PL (1952) Peroxynitrous acid. The reaction between hydrogen peroxide and nitrous acid, and the properties of an intermediate product. J Chem Soc. doi:10.1039/JR9520000928

    Google Scholar 

  50. Anbar M, Taube H (1954) Interaction of nitrous acid and hydrogen peroxide with water. J Am Chem Soc 76:6243–6247

    Article  CAS  Google Scholar 

  51. Pannala AS, Singh S, Rice-Evans C (1999) Interaction of carotenoids and tocopherols with peroxynitrite. In: Packer L (ed) Methods in enzymology, vol 301. Nitric oxide, Part C, chap 34. Academic Press, London

  52. Smulik R, Debski D, Zielonka J, Michalowski B, Adamus J, Marcinek A, Kalyanaraman B, Sikora A (2014) Nitroxyl (HNO) reacts with molecular oxygen and forms peroxynitrite at physiological pH: biological applications. J Biol Chem 289:35570–35580. doi:10.1074/jbc.M114.597740

    Article  CAS  Google Scholar 

  53. Kissner R, Koppenol W (2002) Product distribution of peroxynitrite decay as a function of pH, temperature and concentration. J Am Chem Soc 124:234–239

    Article  CAS  Google Scholar 

  54. Khan A, Kovacik D, Kolbanovskiy A, Desai M, Frenkel K, Geacintov N (2000) The decomposition of peroxynitrite to nitroxyl anion (NO) and singlet oxygen in aqueous solutions. Proc Natl Acad Sci USA. doi:10.1073/pnas.050587297

    Google Scholar 

  55. Martinez G, Di Mascio P, Bonini M, Augusto O, Briviba K, Sies H, Maurer P, Röthlisberger U, Herold S, Koppenol W (2000) Peroxynitrite does not decompose to singlet oxygen (1ΔgO2) and nitroxyl (NO). Proc Natl Acad Sci USA 97(19):10307–10312. doi:10.1073/pnas.190256897

    Article  CAS  Google Scholar 

  56. Hughes M (1999) Relationship between nitric oxide, nitroxyl ion, nitrosonium cation and peroxynitrite. Biochem Biophys Acta 1411:263–272

    CAS  Google Scholar 

  57. Radi R (2009) Nitric oxide, oxidants and protein tyrosine nitration. Proc Natl Acad Sci USA 106:1–12. doi:10.1073/pnas.0307446101

    Article  Google Scholar 

  58. Van der Vliet A, O’Neil C, Halliwell B, Cross C, Kaur H (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. FEBS Lett 339:89–92

    Article  Google Scholar 

  59. Butler A, Rutherford T, Short D, Ridd J (1997) Tyrosine nitration and peroxonitrite (peroxynitrite isomerisation: 15N CIDNP NMR study. Chem Commun 7:669–670

    Article  Google Scholar 

  60. Squadrito G, Pryor W (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Radic Biol Med 25:392–403

    Article  CAS  Google Scholar 

  61. McConnell P, Reasor M, Van Dyke K (2003) Three model systems measure oxidation/nitration damage caused by peroxynitrite. J Biosci 28:71–76

    Article  CAS  Google Scholar 

  62. Bobkova E, Krasnov D, Sungurova A, Rybkin V, Choi H (2014) Personal communication

  63. Carey F, Giuliana B (2011) Organic chemistry. McGraw Hill, New York City

    Google Scholar 

  64. Soloman T, Fryhle C (2011) Organic chemistry. Wiley, New York

    Google Scholar 

  65. Beyer H, Walter W (1997) Organic chemistry. Albion Chemical Sciences Series

  66. Allinger N, Cava M, Jonsh D, Johnson C, Lebel N, Stevens C (1971) Organic chemistry. Worth Publishers, London

    Google Scholar 

  67. March J (1992) Advances in organic chemistry. Wiley, New York

    Google Scholar 

  68. Vogel P (1997) Chimie organique (in French). De Boek, Bruxelles

    Google Scholar 

  69. Moussa D, Brisset JL (2003) Disposal of spent tributylphosphate by gliding arc plasma. J Hazard Mater 102:189–200

    Article  CAS  Google Scholar 

  70. Pascal S, Moussa D, Hnatiuc E, Brisset JL (2010) Plasma-chemical degradation of Phosphorous containing warfare agents. J Hazard Mater 175:1037–1041

    Article  CAS  Google Scholar 

  71. Augusto O, Bonini M, Amanso A, Linares E, Santos C, De Menezes S (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology (review). Free Radic Biol Med 32:841–859

    Article  CAS  Google Scholar 

  72. Lymar SV, Hurst JK (1995) Rapid reaction between peroxonitrite ion and carbon dioxide: im for biological activity. J Am Chem Soc 117:8867–8868

    Article  CAS  Google Scholar 

  73. Padmaja S, Squadritto G, Lemercier JN, Cueto R, Pryor W (1997) Peroxynitrite mediated oxidation of D.L-Selenothionine: kinetics, mechanism and the role of carbon dioxide. Free Radic Biol Med 23:917–926

    Article  CAS  Google Scholar 

  74. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von den Hagen T, Weltmann KD (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:013002. doi:10.1088/0022-3727/44/1/013002

    Article  Google Scholar 

  75. Cantrell C (1998) NOx in the atmosphere. In: Alfassi Z (ed) N-centered radicals. Wiley, New York

    Google Scholar 

  76. Wardman P (1998) Nitrogen dioxide in biology: correlating chemical kinetics with biological effects. In: Alfassi Z (ed) N-centered radicals. Wiley, New York

    Google Scholar 

  77. Goldstein S, Squadrito G, Pryor W, Czapski G (1996) Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Radic Biol Med 21:965–974

    Article  CAS  Google Scholar 

  78. Denicola A, Souza J, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membrane. Proc Natl Acad Sci USA 95:3566–3571

    Article  CAS  Google Scholar 

  79. Pacher P, Beckman J, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  80. Abdelmalek F (2003) Plasmachimie des solutions aqueuses. Application à la dégradation de composés toxiques. Ph.D Thesis, in French, University of Mostaganem, Mostaganem, Algeria

  81. Katsumura Y (1998) NO2 and NO3 radicals in radiolysis of nitric acid solutions. In: Alfassi Z (ed) N-centered radicals. Wiley, New York

    Google Scholar 

  82. Zielonka J, Sikora A, Joseph J, Kalyanaraman B (2010) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate bases fluorescent probes. J Am Soc Biochem Mol Biol. doi:10.1074/jbc.M110.110080

    Google Scholar 

  83. Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P (2013) Formation of ROS and RNS in water electro-sprayed through tansient spark discharge in air and their bactericidal effects. Plasma Proc Polym 10:649–659

    Article  CAS  Google Scholar 

  84. Alvarez S, Zaobornyi T, Valdez V (2000) Peroxynitrite dependent chemiluminescence. Free Radic Biol Med 29(10, Suppl. 1):S65

    Google Scholar 

  85. Lu C, Lin J, Huie C, Yamada Y (2004) Chemiluminescence study of carbonate and peroxynitrous acid and its application to the direct determination of nitrite based on solid surface enhancement. Anal Chim Acta 510:29–34

    Article  CAS  Google Scholar 

  86. Lukes P, Clupek M, Babicky V, Sunka P (2008) UV radiation from the pulsed corona discharge in water. Plasma Source Sci Technol 17:024012. doi:10.1088/0963-0252/17/2/024012

    Article  Google Scholar 

  87. Liang B, Andrews L (2001) IR spectra of cis and trans peroxynitrite in solid argon. J Am Chem Soc 123:9848–9854

    Article  CAS  Google Scholar 

  88. Lo WJ, Lee YP, Tsai JH, Tsai HH, Hamilton TP, Harrisson JG, Beckmann J (1995) IR absorption of cis/trans alkali metal peroxynitrites (Li, Na, K) in solid argon. J Chem Phys 103:4026–4034. doi:10.1063/1.469588

    Article  CAS  Google Scholar 

  89. Peteu S, Bose T, Bayachou M (2013) Polymerized hemin as an electrocatalytic platform for peroxynitrite’s oxidation and detection. Anal Chim Acta 780:81–88

    Article  CAS  Google Scholar 

  90. Akolkar R, Sankaran R (2013) Charge transfer processes at the interface between plasmas and liquids. J Vac Sci Technol, A 31:050811. doi:10.116/1.4810786

    Article  Google Scholar 

  91. Wu S, Wang L, Jasinski K, Kubant R, Malinski T (2010) Ultraviolet B light induced-nitric oxide/peroxynitrite imbalance in keratinocytes implications for apoptosis and necrosis. Photochem Photobiol 86:389–396

    Article  CAS  Google Scholar 

  92. Pavlovich M, Chen Z, Sakiyama Y, Clak D, Graves D (2013) Antimicrobial synergy between ambient gas plasma and UVA treatment of aqueous solutions. Plasma Proc Polym 10:69–76. doi:10.1002/ppap.201200073

    Article  CAS  Google Scholar 

  93. Merouani DR, Abdelmalek F, Guezzar MR, Semmoud A, Addou A, Brisset JL (2013) Influence of peroxynitrite in gliding arc discharges treatment of Alizarine Red S and post discharge effects. Ind Eng Chem Res 52:1471–1480

    Article  CAS  Google Scholar 

  94. Kamgang Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL, Doubla A, Naitali M (2007) Evidence of temporal post-discharge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei. Lett Appl Environ Microbiol 73:4791–4796

    Article  CAS  Google Scholar 

  95. Kamgang Youbi G (2008) Propriétés réactives en post-décharge temporelle des décharges électriques glissantes dans l’air humide: Application à la dégradation de colorant azoïque et a la décontamination microbienne. Ph D Thesis, in French, Universities of Rouen (France) and Yaounde-I (Cameroon)

  96. Gnokam Zumgang F, Doubla A, Brisset JL (2010) Temporal post-discharge reactions in plasma-chemical degradation of slaughterhouse effluents. Chem Eng Commun 198:483–493. doi:10.1080/009864445.49846

    Article  Google Scholar 

  97. Herold S, Fago A (2005) Reaction of peroxynitrite with globin proteins and their possible physiological role. Comp Biochem Physiol A 142:124–129

    Article  Google Scholar 

  98. Deem S, Gladwin M, Berg J, Kerr M, Swenson E (2001) S-nitrosation of Hb on HPV (hypotoxic pulmonar vasoconstrictor) and expired NO. Am J Respir Crit Care Med 163:1164–1170

    Article  CAS  Google Scholar 

  99. Park G, Park S, Choi M, Koo I, Byun J, Hong J, Sim J, Collins G, Lee J (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001. doi:10.1088/0963-0252/21/4/043001

    Article  Google Scholar 

  100. Trujillo M, Radi R (2002) Peroxynitrite reaction with the reduced and the oxidize forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch Biochem Biophys 397:91–98

    Article  CAS  Google Scholar 

  101. Moreau M, Moussa D, Brisset JL, Orange N (2007) Antibacterial effects of the non thermal plasma treatment. In Roman C (ed) Proceedings of the European research in cold plasma applications, Iasi, Romania, pp 177–194. ISBN 978-973-0-04933-6

  102. Pourbaix M (1973) Lectures on electrochemical corrosion. Plenum Press, New York

    Book  Google Scholar 

  103. Sucha L, Kotrly S (1972) Solution equilibria in analytical chemistry. Van Nostrand Reinhold Co, London

    Google Scholar 

  104. Armstrong D (1998) Thermochemistry of N-centered radicals. In: Alfassi Z (ed) N-centered radicals. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This paper accounts for research activities developed in the scope of the European COST Action TD1028 program “Electrical discharges with liquids for future applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Brisset.

Additional information

Jean-Louis Brisset was retired from University of Rouen, Rouen, France.

Appendices

Appendix 1

Exchange of n electrons between an oxidizer and a reducer (Ox + ne = Red) is governed by the Gibbs free energy ΔG, i.e.

$$\Delta {\text{G}} = - {\text{n}}F\left[ {E\left( {{\text{Ox}}/{\text{Red}}} \right) - E^\circ \left( {{\text{H}}^{ + } /{\text{H}}_{2} } \right)} \right],$$
(44)

which is related to the potential of the system E(Ox/Red) and to that of the hydrated proton E°(H+/H2). E(Ox/Red) may be expressed in terms of the activities a(i) and approximated by concentrations of the solutes C(i) for dilute solutions:

$$E\left( {{\text{Ox}}/{\text{Red}}} \right) \approx E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {RT/{\text{n}}F} \right){\text{Ln}}\left[ {{\text{C}}\left( {\text{Ox}} \right)/{\text{C}}\left( {\text{Red}} \right)} \right]$$
(45)
$$E\left( {{\text{Ox}}/{\text{Red}}} \right) \approx E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {2.303 \times {\text{RT}}/{\text{nF}}} \right){ \log }_{10} {\text{C}}\left( {\text{Ox}} \right)/{\text{C}}\left( {\text{Red}} \right)$$
(46)

where E°(Ox/Red) is the standard oxidation potential of the system (in volts, versus the standard hydrogen electrode potential, which is conventionally zero for all temperatures) for solute unit activity; F is the Faraday constant (F = 96,484.56 C mol−1), R is the gas constant (8.314 J K−1 mol−1) and T(K) is the temperature. The value of the Nernst–Peters coefficient (2.303 × RT/F) is close to 0.059 V at room temperature.

Most of electrochemical equilibria concerning organic compounds involve protons according to the equation:

$${\text{Ox}} + {\text{ne}} + 2q{\text{H}}^{ + } = {\text{Red}} + {\text{H}}_{2} {\text{O}}$$
(47)

and they are thus accounted by the pH-dependent form of the Nernst law:

$$E\left( {{\text{Ox}}/{\text{Red}}} \right) \approx E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {RT/{\text{n}}F} \right){\text{Ln}}\left[ {\left( {{\text{C}}\left( {\text{Ox}} \right) \times {\text{CH}}^{ + } } \right)^{q} /{\text{C}}\left( {\text{Red}} \right)} \right]$$
(48)
$${\text{or}}\quad E\left( {{\text{Ox}}/{\text{Red}}} \right) \approx E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {2.303 \times RT/{\text{n}}F} \right){ \log }_{10} {\text{C}}\left( {\text{Ox}} \right)/{\text{C}}\left( {\text{Red}} \right) - \left( {2.303 \times RT/{\text{n}}F} \right)q*pH$$
(49)

The solution potential is then pH-dependent since it is governed by the actual concentrations of electron exchangers. Assuming that the considered species present single acid–base properties, (e.g., one proton exchange between the acid and its matching base: Ox = Ox + H+, constant Ka and Red = Red + H+, constant K′a), the concentrations C(i) in Ox and Red forms are affected by acidity. For introduced concentrations C°(Ox) and C°(Red), the actual concentrations are C(Ox) and C(Red) with

$${\text{C}}^\circ \left( {\text{Ox}} \right) = {\text{C}}\left( {\text{Ox}} \right) + {\text{C}}({\text{Ox}}^{ - } ) = {\text{C}}\left( {\text{Ox}} \right)\left[ {1 + {\text{K}}_{\text{a}} /{\text{C}}\left( {{\text{H}}^{ + } } \right)} \right] = {\text{C}}\left( {\text{Ox}} \right) \times\upalpha\left( {\text{Ox}} \right)$$
(50)

and similarly

$${\text{C}}^\circ \left( {\text{Red}} \right) = {\text{C}}\left( {\text{Red}} \right)\left[ {1 + K^{{\prime }}_{\text{a}} /{\text{C}}\left( {{\text{H}}^{ + } } \right)} \right] = {\text{C}}\left( {\text{Red}} \right) \times\upalpha\left( {\text{Red}} \right)$$
(51)

where the side reaction coefficients relevant to protons α(Ox) and α(Red) are occasionally referred to masking coefficients. The Nernst–Peters equation applied to Ox and Red is then:

$$E \approx E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {2.303 \times RT/{\text{n}}F} \right){ \log }_{10} [{\text{C}}^\circ \left( {\text{Ox}} \right)/{\text{C}}^\circ \left( {\text{Red}} \right)\left] { + \left( {2.303 \times RT/{\text{n}}F} \right){ \log }_{10} } \right[\upalpha\left( {\text{Red}} \right)/\upalpha\left( {\text{Ox}} \right)]$$
(52)

and (after correction for the activity coefficients if necessary) the formal standard potential E′° is clearly pH dependent due to the logarithm term:

$$E^{{{\prime }\circ }} = E^\circ \left( {{\text{Ox}}/{\text{Red}}} \right) + \left( {2.303 \times RT/{\text{n}}F} \right){ \log }_{10} [\upalpha\left( {\text{Red}} \right)/\upalpha\left( {\text{Ox}} \right)]$$
(53)

In the most of cases, the masking coefficients take a simplified expression in a given pH range, so that E′° = f(pH) is linear in discrete pH domains.

Example: The quinone C6H4O2/hydroquinone C6H4(OH)2 system exchanges 2e according to:

$${\text{Q}} + 2{\text{H}}^{ + } + 2{\text{e}} = {\text{QH}}_{2} .$$
(54)

In the acidity range 0 < pH < 7, the oxidizer remains in the molecular form Q, while the reducer QH2 can release a proton and yield QH (0 < pK′a < 7). Then

$$\upalpha\left( {\text{Ox}} \right) = 1\;{\text{and}}\;\upalpha\left( {\text{Red}} \right) = 1 + {\text{K}}^{{\prime }}_{\text{a}} /{\text{C}}\left( {{\text{H}}^{ + } } \right)$$
(55)

and α(i) take simplified expressions, e.g., α(Red) ≈ K′a/C(H+). The resulting E′° expressions are gathered in Table 7.

Table 7 E′° expressions for selected pH parameters

The E′° = f(pH) plot presents two lines of respective slopes −0.06 and −0.03 V per pH unit for Q/QH2 for pH < pK′a, and Q/QH for pK′a < pH < 7.

Basic information of the E′° versus pH diagrams can be found in [25, 102, 103] and for ammonia, azide, tryptophan and for trimethylamine and aniline in [104].

Appendix 2

A better understanding of aged and diluted PAW efficacy may be illustrated (Fig. 7) with the help of E′° versus pH graphs. Let (P) refer to newly prepared PAW, which contains the oxidising Plasma Active Species in given respective concentrations, and (T) to the target solution. The species P are reduced into R (P + ne + qH+ = R) according to the matching Nernst’s equation:

Fig. 7
figure 7

Plasma activated water (dashed lines) remains a strong oxidiser for organic wastes T (solid line) after ageing (or/and dilution)

$$E\left( {\text{P}} \right) = E^\circ \left( {{\text{P}}/R} \right) + \left( {0.06/{\text{n}}} \right){ \log }\;a\left( {\text{P}} \right)/a\left( {\text{R}} \right){-}\left( {0.06/{\text{n}}} \right)\log \;a\left( {{\text{H}} + } \right)^{\text{q}} .$$
(56)

The associated E′° versus pH plot is thus given by:

$$E^{{{\prime }\circ }} \left( {\text{P}} \right) \approx {\text{E}}^\circ \left( {{\text{P}}/{\text{R}}} \right) - \left( {0.06 \times {\text{q}}/{\text{n}}} \right){\text{pH}}$$
(57)

and is represented by a line with the slope (0.06q/n). Point A on line (P) represents the initial PAW solution. Dilution of PAW often takes place before incorporating a PAW aliquot to (T). Diluting (P) induces a decrease in the activities of the active species a(P) and in the produced species a(R) which usually remain in the same ratio. The resulting plot is thus not modified, so that the representative point remains A. However, in the case that only a(P) is affected (and lowered), the new representative point B is located on a E′° versus pH line parallel to line E(P) i.e. with the same slope 0.06 q/n.

Ageing of the PAW solution implies an increase in acidity (or a decrease in pH). The new position C or C′ of the oxidiser is placed on the E(P) or E′(P) line at a lower pH = pH′. For pH = pH′, the oxidation–reduction system of the target T is represented by point D on the red line. The reaction Gibbs free energy between the P and T species remains largely negative, so that the oxidation of T takes place easily.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisset, JL., Pawlat, J. Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-discharge and Plasma Activated Water. Plasma Chem Plasma Process 36, 355–381 (2016). https://doi.org/10.1007/s11090-015-9653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9653-6

Keywords

Navigation