Skip to main content

Advertisement

Log in

Water Purification by Plasmas: Which Reactors are Most Energy Efficient?

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Decomposition of toxic organic compounds is a major environmental problem. Increasingly, research is being conducted to use plasmas to decompose these wastes in water, as it is simple, effective and does not require the addition of other chemical agents. Different groups have used varied reactor designs. This study calculates and compares relative energy yields of about 27 major types of plasma reactors. The results reveal dramatic differences in the energy yields, up to five orders of magnitude. The most efficient are pulse powered reactors, in which plasma is formed in gas phase and the waste solution sprayed into it. Factors that account for this improved energy yield are discussed. This study will help narrow down efficient reactors for further studies, development and commercial uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clements JS, Sato M, Davis RH (1987) IEEE Tran Ind Appl IA-23(2):224

    Article  Google Scholar 

  2. Malik MA, Ghaffar A, Malik SA (2001) Plasma Sources Sci Techno 10:82

    Article  ADS  Google Scholar 

  3. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45:882

    Article  Google Scholar 

  4. Shi J, Bian W, Yi X (2009) J Hazard Mater 171:924

    Article  Google Scholar 

  5. Shen YJ, Lei LC, Zhang XW, Zhou MH, Zhang Y (2008) Energ Conver Manag 49:2254

    Article  Google Scholar 

  6. Dang TH, Denat A, Lesaint O, Teissedre G (2009) Eur Phys J Appl Phys 47:22818

    Article  Google Scholar 

  7. Sun B, Sato M, Clements JS (1999) J Phys D Appl Phys 32:1908

    Article  ADS  Google Scholar 

  8. Malik MA, Rehman U, Ghaffar A, Ahmed K (2002) Plasma Sources Sci Technol 11:236

    Article  ADS  Google Scholar 

  9. Sato M, Kon-no D, Ohshima T, Sugiarto AT (2005) J Adv Oxid Technol 8(2):198

    Google Scholar 

  10. Miichi T (2006) IEEJ Trans FM 126(8):851 (in Japanese)

    Article  Google Scholar 

  11. Ishijima T, Hotta H, Sugai H, Sato M (2007) Appl Phys Lett 91:121501

    Article  ADS  Google Scholar 

  12. Burlica R, Locke BR (2008) IEEE Trans Ind Appl 44:482

    Article  Google Scholar 

  13. Zhang Y, Zheng J, Qu X, Chen H (2008) Chemosphere 70:1518

    Article  Google Scholar 

  14. Maehara T, Miyamoto I, Kurokawa K, Hashimoto Y, Iwamae A, Kuramoto M, Yamshita H, Mukasa S, Toyota H, Nomura S, Kawashima A (2008) Plasma Chem Plasma Process 28:467

    Article  Google Scholar 

  15. Ikoma S, Satoh K, Itoh H (2009) IEEJ Trans FM 129(4):237 (in Japanese)

    Google Scholar 

  16. Zhang L, Sun B, Zhu X (2009) J Electrost 67:62

    Article  Google Scholar 

  17. Minamitani Y, Shoji S, Ohba Y, Higasiyam Y (2008) IEEE Trans Plasma Sci 36:2586

    Article  ADS  Google Scholar 

  18. Stara Z, Krcma F, Nejezchleb M, Skalny JD (2009) Desalination 239:283

    Article  Google Scholar 

  19. Sugiarto AT, Ito S, Ohshima T, Sato M, Skalny JD (2003) J Electrost 58:135

    Article  Google Scholar 

  20. Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82:189

    Article  Google Scholar 

  21. Malik MA (2003) Plasma Sources Sci Technol 12:S26

    Article  Google Scholar 

  22. Lukes P, Clupek M, Sunka P, Peterka F, Sano T, Negishi N, Matsuzawa S, Takeuchi K (2005) Res Chem Intermed 31:285

    Article  Google Scholar 

  23. Gao JZ, Ma DP, Guo X, Wang AX, Fu Y, Wu JL, Yang W (2008) Plasma Sci Technol 10(4):422

    Article  ADS  Google Scholar 

  24. Sugiarto AT, Ohshima T, Sato M (2002) Thin Solid Films 407:174

    Article  Google Scholar 

  25. Kinoshita Y, Okumura N, Takashima K, Shinji K, Mizuno A (2004) In Proc ISNTPT4, Panama City, USA, p 178

  26. Gong J, Cai W (2007) Plasma Sci Technol 9(2):190

    Article  ADS  Google Scholar 

  27. Burlica R, Kirkpatrick MJ, Finney WC, Clark RJ, Locke BR (2004) J Electrost 62:309

    Article  Google Scholar 

  28. Kusic H, Koprivanac N, Peternel I, Locke BR (2005) J Adv Oxid Technol 8:2–172

    Google Scholar 

  29. Mok YS, Jo JO, Whitehead JC (2008) Chem Eng J 142:1–56

    Article  Google Scholar 

  30. Sano N, Kawashima T, Fujikwa J, Fujimoto T, Kiti T, Kanki T (2002) Ind Eng Chem Res 41:5906

    Article  Google Scholar 

  31. Grabowski LR, van Veldhuizen EM, Pemen AJM, Rutgers WR (2007) Plasma Sources Sci Technol 16:226

    Article  ADS  Google Scholar 

  32. Yano T, Uchiyama I, Fukawa F, Teranishi K, Shimomura N (2008) Proc IEEE Int Power Modulators and High Voltage Conf p 80

  33. Nakagawa Y, Mitamura S, Fujiwara Y, Nishitani T (2003) Jpn J Appl Phys 42–1:3–1422

    Google Scholar 

  34. MagureanuM, Mandache NB (2005) Proc XXVII ICPIG, Eindhoven, The Netherlands,18–22 July, 2005, Topic No. 18–118

  35. Li J, Zhou Z, Wang H, Li G, Wu Y (2007) Desalination 212:123

    Article  Google Scholar 

  36. Nikiforov AY (2009) IEEE Trnas Plasma Sci 37:872

    Article  ADS  Google Scholar 

  37. Baroch P, Anita V, Saito N, Takai O (2008) J Electrost 66:294

    Article  Google Scholar 

  38. Willberg DM, Lang PS, Hochemer RH, Kratel A, Hoffmann MR (1996) Environ Sci Technol 30:2526

    Article  Google Scholar 

  39. Sato K, Yasuoka K, Ishii S (2008) IEEJ Trans FM 128:401

    Article  Google Scholar 

  40. Malik MA, Minamitani Y, Xiao S, Kolb YF, Schoenbach KH (2005) IEEE Trans Plasma Sci 33(2):490

    Article  ADS  Google Scholar 

  41. Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) J Phys D Appl Phys 41:234007

    Article  ADS  Google Scholar 

  42. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053001

    Article  ADS  Google Scholar 

  43. Sato M, Ohgiyama T, Clements JS (1996) IEEE Trans Ind Appl 32:106

    Article  Google Scholar 

  44. Sunka P, Babicky V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M (1999) Plasma Sources Sci Technol 8:258

    Article  ADS  Google Scholar 

  45. Joshi AA, Locke BR, Arce P, Finney WC (1995) J Hazard Mater 41:3

    Article  Google Scholar 

  46. Gupta SB, Bluhm H (2007) Water Sci Technol 55(12):7

    Article  Google Scholar 

  47. Sun B, Sato M, Harano A, Clements JS (1998) J Electrost 43:115

    Article  Google Scholar 

  48. Sun B, Kunitomo S, Igarashi C (2006) Appl Phys 39:3814

    Google Scholar 

  49. Lukes P, Clupek M, Babicky V, Sunka P (2008) Plasma Sources Sci Technol 17:024012

    Article  ADS  Google Scholar 

  50. Medodovic S, Locke BR (2009) J Phys D Appl Phys 42:049801

    Article  ADS  Google Scholar 

  51. Sun B, Sato M, Clements JS (1997) J Electrost 39:189

    Article  Google Scholar 

  52. Bian W, Zhou M, Lei L (2007) Plasma Chem Plasma Process 27(3):337

    Article  Google Scholar 

  53. Lukes P, Appleton AT, Locke BR (2004) IEEE Trans Ind Appl 40(1):60

    Article  Google Scholar 

  54. Sahni M, Locke BR (2006) Plasma Process Polym 3:668

    Article  Google Scholar 

  55. De Baerdemaeker F, Simek M, Clupek M, Lukes P, Leys C (2006) Czech J Phys 56:B1132

    Article  Google Scholar 

  56. Gao J, Wang A, Fu Y, Wu J, Ma D, Guo X, Li Y, Yang W (2008) Plasma Sci Technol 10(1):30

    Article  ADS  Google Scholar 

  57. Bruggeman P, Schram D, Gonzalez MA, Rego R, Kong MG, Leys C (2009) Plasma Sources Sci Technol 18:025017

    Article  ADS  Google Scholar 

  58. Ono R, Oda T (2003) J Appl Phys 93:10–2876

    Google Scholar 

  59. Handa T, Minamitani Y (2009) IEEE Trans Plasma Sci 37(1):179

    Article  ADS  Google Scholar 

  60. Pokryvailo A, Wolf M, Yankelevich Y, Wald S, Grabowski LR, van Veldhuizen EM, Rutgers WR, Reiser M, Glocker B, Eckhardt T, Kempenaers P, Welleman A (2007) IEEE Trans Plasma Sci 34:1731

    Article  ADS  Google Scholar 

  61. Bystritskii VM, Gonzales A, Olson T, Puchkarev V, Rosocha L, Wessel FJ, Yankelevich Y (1996) Proc 1lth Intl Conference on High Power Particle Beams, Prague, p 886–889, June 1996, Institute of Plasma Physics, Czech Academy of Sciences, ISBN 80-902250-2-0

  62. Bystritskii VM, Wood TK, Yankelevich Y, Chauhan S, Yee D, Wessel F (1997) In Proc 11th IEEE Int Pulsed Power Conf, vol. 1, pp 79–84 (1997)

  63. Minamitani Y, Higasiyam Y (2003) J Inst Electrost Jpn 27(3):123 (in Japanese)

    Google Scholar 

Download references

Acknowledgments

The author thanks Mr. Francis Reidy for providing the fellowship, which funded this research, Dr. Imtiaz Ahmed, Mr. Ejaz ur Rehman of ACL and Ms. Barbara C. Carroll of ODU for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, M.A. Water Purification by Plasmas: Which Reactors are Most Energy Efficient?. Plasma Chem Plasma Process 30, 21–31 (2010). https://doi.org/10.1007/s11090-009-9202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9202-2

Keywords

Navigation