Skip to main content
Log in

Temporal second-order difference methods for solving multi-term time fractional mixed diffusion and wave equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This article deals with an establishment and sharp theoretical analysis of a numerical scheme devised for solving the multi-dimensional multi-term time fractional mixed diffusion and wave equations. The governing equation contains both fractional diffusion term and fractional wave term which make the numerical analysis challenging. With the help of the method of order reduction, we convert the time multi-term fractional diffusion and wave terms into the time multi-term fractional integral and diffusion terms respectively, and then develop L2-1σ formula for solving the latter problem. In addition, the formula is used to numerically solve the time distributed-order diffusion and wave equations. The stability and convergence of these numerical schemes are rigorously analyzed by the energy method. The convergence rates are of order two in both time and space. A difference scheme on nonuniform time grids is also constructed for solving the problem with weak regularity at the initial time. Finally, we illustrate our results with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithms 75(1), 173–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

    Article  MATH  Google Scholar 

  4. Caputo, M.: Mean fractional order derivatives: Differential equations and filters. Annals Univ. Ferrara-Sez. VII-Sc. Mat. XLI, 73–84 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6(3), 259–280 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Chen, H., Lü, S.J., Chen, W.P.: A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients. J. Comput. Appl. Math. 330, 380–397 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219(4), 1737–1748 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Das, S., Pan, I.: Fractional order signal processing: introductory concepts and applications. Springer briefs in applied sciences and technology. Springer, Heidelberg (2012)

  9. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duncan, T.E., Hu, Y.Z., Pasik-Duncan, B.: Stochastic calculus for fractional Brownian motion. I: theory. IEEE. Conf. Decis. Control 38, 212–216 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Feng, L.B., Liu, F., Turner, I.: Finite difference/finite element method for a novel 2d multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. Commun. Nonlinear Sci. Numer. Simulat. 70, 354–371 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, L.B., Liu, F., Turner, I., Zheng, L.C.: Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid. Fract. Calc. Appl. Anal. 21(4), 1073–1103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64(10), 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16(2), 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hao, Z.P., Lin, G.: Finite difference schemes for multi-term time-fractional mixed diffusion-wave equations, arXiv:1607.07104 [math.NA] (2016)

  19. Hu, X., Liu, F., Anh, V., Turner, I.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. Electron. Suppl. 55(C), C464–C478 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kelly, J.F., McGough, R.J., Meerschaert, M.M.: Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124(5), 2861–2872 (2008)

    Article  Google Scholar 

  22. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal Appl. 340(1), 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liao, H.L., Mclean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem, arXiv:1803.09873v4 [math NA] (2019)

  26. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. López-Marcos, J.: A difference scheme for a nonlinear partial integro differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meghreblian, R.V., Holmes, D.K.: Reactor Analysis. McGraw-Hill Book Company, USA (1960)

    Google Scholar 

  31. Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Related Fields 128(1), 141–160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Pourbabaee, M., Saadatmandi, A.: A novel Legendre operational matrix for distributed order fractional differential equations. Appl. Math. Comput. 361, 215–231 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springe, New York (1997)

    MATH  Google Scholar 

  35. Reng, J.C., Chen, H., Zhang, J.W., Zhang, Z.M.: Error analysis of a fully discrete scheme for a multi-term time fractional diffusion equation with initial singularity (in Chinese). Sci. Sin. Math. 50, 1–18 (2020)

    Google Scholar 

  36. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Res. Research 39(10), 1296 (2003)

    Article  Google Scholar 

  38. Shen, S., Liu, F., Anh, V.: The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation. J. Comput. Appl. Math. 345, 515–534 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shiralashetti, S.C., Deshi, A.B.: An efficient haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  40. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Su, N., Nelson, P.N., Connor, S.: The distributed-order fractional diffusion-wave equation of groundwater flow: theory and application to pumping and slug tests. J. Hydrol. 529, 1262–1273 (2015)

    Article  Google Scholar 

  43. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differ. Equ. 32(3), 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, H., Zhao, X., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation. J. Sci. Comput. 78, 462–498 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Sun, X.Q., Xiao, H., Zhang, W.W., Liu, F.: A new computational method for the one-dimensional diffusion problem with the diffusive parameter variable in fractal media. Therm. Sci. 19, 117–122 (2015)

    Article  Google Scholar 

  46. Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  47. Sun, Z.Z., Ji, C.C., Du, R.: A new analytical technique of the l-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations. Appl. Math. Lett. 102, 106–115 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Velibor, Ž., Dušan, Z.: Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law. Phys. A 492, 2316–2335 (2018)

    Article  MathSciNet  Google Scholar 

  50. Vyawahare, V.A., Nataraj, P.S.V.: Fractional-order modeling of neutron transport in a nuclear reactor. Appl. Math. Model. 37(23), 9747–9767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80(3), 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, H., Liu, F., Jiang, X., Zeng, F., Turner, I.: A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. Comput. Math. Appl. 76(10), 2460–2476 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, Y.M., Wang, F., Hu, X.H., Shi, Z.G., Tang, Y.F.: Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2d bounded domain. Comput. Math. Appl. 78, 1705–1719 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhuang, P.H., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research is supported by the National Natural Science Foundation of China (grant number 11671081) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant number KYCX20_0072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The proof of Lemma 2.3

For simplicity, we just have to prove the property of \(d_{k}^{(n,\beta _{q})}\) here.

(I) Proof of (2.12). It is easy to know that

$$d_{0}^{(n,\beta_{q})}=\frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}>0,\quad d_{1}^{(n,\beta_{q})}=\frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}\Big((1+\frac{1}{\sigma})^{2-\beta_{q}}-2\Big)\geq0, $$

and

$$ \begin{array}{@{}rcl@{}} d_{n+1}^{(n,\beta_{q})}=(n+\sigma)^{1-\beta_{q}}-\frac{1}{2-\beta_{q}}\left[(n+\sigma)^{2-\beta_{q}}- (n+\sigma-1)^{2-\beta_{q}}\right]\geq0. \end{array} $$

For 2 ≤ ln, we have

$$ \begin{array}{@{}rcl@{}} d_{l}^{(n,\beta_{q})}&=&\frac{1}{2-\beta_{q}}\left[(l+\sigma)^{2-\beta_{q}}-2(l+\sigma-1)^{2-\beta_{q}}+ (l+\sigma-2)^{2-\beta_{q}}\right]\\ &\geq&(1-\beta_{q})(l+\sigma)^{-\beta_{q}}\geq0. \end{array} $$

(II) The overall structure of the proof of (2.13) is as follows.

For 3 ≤ ln we have

$$ \begin{array}{@{}rcl@{}} d_{l}^{(n,\beta_{q})}-d_{l-1}^{(n,\beta_{q})} &=&\frac{1}{2-\beta_{q}}\left[(l+\sigma)^{2-\beta_{q}}-3(l+\sigma-1)^{2-\beta_{q}}+3(l+\sigma-2)^{2-\beta_{q}}\right.\\ &&\left.\qquad\quad\ - (l+\sigma-3)^{2-\beta_{q}}\right]\\ &\leq&-\beta_{q}(1-\beta_{q})(l+\sigma)^{-1-\beta_{q}}\leq0. \end{array} $$

In addition, we have

$$ \begin{array}{@{}rcl@{}} d_{2}^{(n,\beta_{q})}-2d_{1}^{(n,\beta_{q})}&=&\frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}} \left[5+ (1+\frac{2}{\sigma})^{2-\beta_{q}}-4(1+\frac{1}{\sigma})^{2-\beta_{q}}\right] \\ &=&\frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}H(x,y), \end{array} $$
(A1.1)

where

$$H(x,y)=5+(1+2x)^{y}-4(1+x)^{y},\quad x=\frac{1}{\sigma}\in(1,2),~y=2-\beta_{q}\in(1,2).$$

By tedious calculation, one can find that H(x, y) < 0. Consequently, we have \(d_{2}^{(n,\beta _{q})}-2d_{1}^{(n,\beta _{q})}<0\).

$$ \begin{array}{@{}rcl@{}} 2d_{1}^{(n,\beta_{q})}-20d_{0}^{(n,\beta_{q})}=\frac{2\sigma^{2-\beta_{q}}}{2-\beta_{q}} \left[\left( 1+\frac{1}{\sigma}\right)^{2-\beta_{q}}-12\right]<0. \end{array} $$

(III) The proof of (2.14) is as follows.

For 3 ≤ ln − 1 we have

$$ \begin{array}{@{}rcl@{}} &&d_{l+1}^{(n,\beta_{q})}-2d_{l}^{(n,\beta_{q})}+d_{l-1}^{(n,\beta_{q})} \\ &=&\frac{1}{2-\beta_{q}}\left[(l+\sigma+1)^{2-\beta_{q}}-4(l+\sigma)^{2-\beta_{q}}+6(l+\sigma-1)^{2- \beta_{q}}\right.\\ &&\left.\qquad\quad\ -4(l+\sigma-2)^{2-\beta_{q}}+(l+\sigma-3)^{2-\beta_{q}}\right]\\ &\geq&(1+\beta_{q})\beta_{q}(1-\beta_{q})(l+\sigma+1)^{-2-\beta_{q}}\geq0. \end{array} $$

(IV) Through similar processing technique with (A1.1), one can find that (2.15) is also valid.

(III) Proof of (2.16).

$$ \begin{array}{@{}rcl@{}} &&{}d_{s+1}^{(s,\beta_{q})}-8d_{0}^{(s,\beta_{q})}\\ &=&(s+\sigma)^{1-\beta_{q}}-\frac{1}{2-\beta_{q}}\left[(s+\sigma)^{2-\beta_{q}}-(s+\sigma-1)^{1-\beta_{q}} \right]-8 \frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}\\ &\leq&(s+\sigma)^{1-\beta_{q}}-(s+\sigma-1)^{1-\beta_{q}}-8 \frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}\\ &\leq&(1-\beta_{q}) \sigma^{-\beta_{q}}-8 \frac{\sigma^{2-\beta_{q}}}{2-\beta_{q}}=\frac{\sigma^{- \beta_{q}}}{2-\beta_{q}}\left( (1-\beta_{q})(2-\beta_{q})-8 \sigma^{2}\right)\leq0, \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \sum\limits_{s=1}^{n}d_{s+1}^{(s,\beta_{q})} &=&\sum\limits_{s=1}^{n}\left[(s+\sigma)^{1-\beta_{q}}-\frac{1}{2-\beta_{q}}\left( (s+\sigma)^{2-\beta_{q}}-(s+\sigma-1)^{2- \beta_{q}}\right)\right]\\ &\leq&\sum\limits_{s=1}^{n}\left[(s+\sigma)^{1-\beta_{q}}-(s+\sigma-1)^{1-\beta_{q}}\right]\leq(n+\sigma)^{1-\beta_{q}}. \end{array} $$

By the definition of \(\hat {d}_{k}^{(n)}\), we can easily obtain the results. This completes the proof.

Appendix 2: The proof of Lemma 3.6

Notice

$$ \begin{array}{@{}rcl@{}} &&{}\sum\limits_{s=1}^{n}\left( \sum\limits_{k=0}^{s+1}\hat{d}^{(s)}_{s-k+1}v^{k},v^{s+\sigma}\right)\\ &=&\sigma\sum\limits_{s=1}^{n}\left( \sum\limits_{k=0}^{s}\hat{d}^{(s)}_{k}v^{s-k+1}+\hat{d}^{(s)}_{s+1}v^{0}, v^{s+1}\right)\\ &&+(1-\sigma)\sum\limits_{s=1}^{n}\left( \hat{d}^{(s)}_{0}v^{s+1}+\sum\limits_{k=0}^{s-1} \hat{d}^{(s)}_{k+1}v^{s-k}+\hat{d}^{(s)}_{s+1}v^{0},v^{s}\right). \end{array} $$
(A2.1)

For the first term on the right hand side of (A2.1), we get

$$ \begin{array}{@{}rcl@{}} \text{I}&\equiv&\sum\limits_{s=1}^{n}\left( \sum\limits_{k=0}^{s}\hat{d}^{(s)}_{k}v^{s-k+1}+\hat{d}^{(s)}_{s+1}v^{0},v^{s+1}\right)\\ &=&\sum\limits_{s=1}^{n}\left( 20\hat{d}^{(s)}_{0}v^{s+1}+2\hat{d}^{(s)}_{1}v^{s}+\sum\limits_{k=2}^{s}\hat{d}^{(s)}_{k}v^{s-k+1}-19 \hat{d}^{(s)}_{0}v^{s+1}-\hat{d}^{(s)}_{1}v^{s}\right. \\ &&\qquad\left.{\vphantom{\sum\limits_{k=2}^{s}}}+\hat{d}^{(s)}_{s+1}v^{0},v^{s+1}\right)\\ &=&\sum\limits_{s=0}^{n}\left( \sum\limits_{k=0}^{s}\tilde{g}^{(s)}_{k}v^{s-k+1},v^{s+1}\right)-19\sum\limits_{s=1}^{n}\hat{d}^{(s)}_{0}\|v^{s+1}\|^{2} \\ &&+\sum\limits_{s=1}^{n}\left( \hat{d}^{(s)}_{s+1}v^{0}-\hat{d}^{(s)}_{1}v^{s},v^{s+1}\right)-\tilde{g}^{(0)}_{0}\|v^{1}\|^{2}, \end{array} $$
(A2.2)

where

$$ \tilde{g}^{(s)}_{0}=20\hat{d}^{(s)}_{0},\quad \tilde{g}^{(s)}_{1}=2\hat{d}^{(s)}_{1},\quad \tilde{g}^{(s)}_{k}=\hat{d}^{(s)}_{k} (k\geq2). $$

In view of the properties of Lemma 2.3, we see that \(\{\tilde {g}^{(s)}_{k}, k\geq 0\}\) satisfies the condition of Lemma 3.4. Therefore, applying Corollary 3.1, one gets that the first term on the right hand side of (A2.2) is non-negative. Further, with the help of the Cauchy-Schwarz inequality and recalling Lemma 2.3, we find that

$$ \begin{array}{@{}rcl@{}} \text{I}&\geq&-19\sum\limits_{s=1}^{n}\hat{d}^{(s)}_{0}\|v^{s+1}\|^{2}+\sum\limits_{s=1}^{n}(\hat{d}^{(s)}_{s+1}v^{0}-\hat{d}^{(s)}_{1}v^{s}, v^{s+1})-\tilde{g}^{(0)}_{0}\|v^{1}\|^{2}\\ &\geq&-19\hat{d}^{(s)}_{0}\sum\limits_{s=1}^{n}\|v^{s+1}\|^{2}-\frac{1}{2}\sum\limits_{s=1}^{n}\hat{d}^{(s)}_{s+1}(\|v^{0}\|^{2}+\|v^{s+1} \|^{2})\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&-\frac{1}{2}\sum\limits_{s=1}^{n}\hat{d}^{(s)}_{1}(\|v^{s}\|^{2}+\|v^{s+1}\|^{2})-20\hat{d}^{(0)}_{0}\|v^{1}\|^{2}\\ &\geq&-28\hat{d}^{(s)}_{0}\sum\limits_{s=2}^{n+1}\|v^{s}\|^{2}-5\hat{d}^{(s)}_{0}\sum\limits_{s=1}^{n}\|v^{s}\|^{2}-\frac{1}{2}\sum\limits_{q=0}^{Q} \mu_{q} \frac{T^{1-\beta_{q}}}{\Gamma(2-\beta_{q})}\|v^{0}\|^{2}\\ &&-20\hat{d}^{(0)}_{0}\|v^{1}\|^{2}. \end{array} $$
(A2.3)

On the other hand, for the second term on the right hand side of (A2.1), we have

$$ \begin{array}{@{}rcl@{}} \text{II}&=&\sum\limits_{s=1}^{n}\left( \hat{d}^{(s)}_{0}v^{s+1}+\sum\limits_{k=0}^{s-1}\hat{d}^{(s)}_{k+1}v^{s-k}+\hat{d}^{(s)}_{s+1}v^{0}, v^{s}\right)\\ &=&\sum\limits_{s=1}^{n}\left( \sum\limits_{k=0}^{s-1}\check{g}^{(s)}_{k}v^{s-k},v^{s}\right)+\sum\limits_{s=1}^{n}(\hat{d}^{(s)}_{0}v^{s+1}- \hat{d}^{(s)}_{1}v^{s}+\hat{d}^{(s)}_{s+1}v^{0},v^{s}), \end{array} $$
(A2.4)

where

$$ \check{g}^{(s)}_{0}=2\hat{d}^{(s)}_{1},\quad \check{g}^{(s)}_{k}=\hat{d}^{(s)}_{k+1} (k\geq1). $$

Recalling Lemmas 2.3 and 3.4 again, we see that the first term on the right hand side of (A2.4) is non-negative. Further, with the similar treatment to (A2.3), we get

$$ \begin{array}{@{}rcl@{}} \text{II}&\geq&\!-\frac{1}{2}\hat{d}^{(s)}_{0}\sum\limits_{s=2}^{n+1}\|v^{s}\|^{2} - \frac{29}{2}\hat{d}^{(s)}_{0} \sum\limits_{s=1}^{n}\|v^{s}\|^{2} - \frac{1}{2}\sum\limits_{q=0}^{Q}\mu_{q} \frac{T^{1-\beta_{q}}}{\Gamma(2 - \beta_{q})}\| v^{0}\|^{2}. \end{array} $$
(A2.5)

Substituting (A2.3) and (A2.5) into (A2.1), we obtain

$$ \begin{array}{@{}rcl@{}} \sum\limits_{s=1}^{n}\left( \sum\limits_{k=0}^{s+1}\hat{d}^{(s)}_{s-k+1}v^{k},v^{s+\sigma}\right)&\geq&-3(5+6\sigma)\sum\limits_{q=0}^{Q} \mu_{q} \frac{\sigma^{2-\beta_{q}}\tau^{1-\beta_{q}}}{\Gamma(3-\beta_{q})}\sum\limits_{s=1}^{n+1}\|v^{s}\|^{2}\\ &&-\sum\limits_{q=0}^{Q}\mu_{q} \frac{T^{1-\beta_{q}}}{2{\Gamma}(2-\beta_{q})}\|v^{0}\|^{2}\\ &&-20\sigma\sum\limits_{q=0}^{Q} \mu_{q} \frac{\sigma^{2-\beta_{q}}\tau^{1-\beta_{q}}}{\Gamma(3-\beta_{q})}\|v^{1}\|^{2}. \end{array} $$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Rl., Sun, Zz. Temporal second-order difference methods for solving multi-term time fractional mixed diffusion and wave equations. Numer Algor 88, 191–226 (2021). https://doi.org/10.1007/s11075-020-01037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01037-x

Keywords

Navigation