Skip to main content
Log in

Implicit difference approximation for the time fractional diffusion equation

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order 0 < α < 1 ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent withO(Τ +h 2), where Τ andh are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Agrawal,Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, J. Nonlinear Dynamics29 (2002), 145–155.

    Article  MATH  Google Scholar 

  2. V. V. Anh and N. N. Leonenko,Spectral analysis of fractional kinetic equations with random data, J. Stat. Pgys.104 (2001), 1349–1387.

    Article  MATH  MathSciNet  Google Scholar 

  3. Orsingher, Enzo, Beghin, Luisa,Time-fractional telegraph equations and telegraph processes with Brownian time, Probab. Theory Related Fields128(1) (2004), 141–160.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. J. Fix and J. P. Roop,Least squares finite element solution of a fractional order two-point boundary value problem, Computers Math. Applic.48 (2004), 1017–1033.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Gorenflo, A. Iskenderov and Yu. Luchko,Maping between solusions of fractional diffusion-wave equations, Fract. Calculus and Appl. Math.3 (2000), 75–86.

    MATH  MathSciNet  Google Scholar 

  6. R. Gorenflo, Yu. Luchko and F. Mainardi,Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comp. Appl. Math.118 (2000), 175–191.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time Fractional Diffusion: A Discrete Random Walk Approach [J], Nonlinear Dynamics29 (2002), 129–143.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Huang and F. Liu,The time fractional diffusion and advection-dispersion equation, ANZIAM J.46 (2005), 1–14.

    Article  MathSciNet  Google Scholar 

  9. Liu, V. Anh, I. Turner,Numerical solution of space fractional Fokker-Planck equation J. Comp. and Appl. Math.166 (2004), 209–219.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Liu, V. Anh, I. Turner and P. Zhuang,Time fractional advection dispersion equation, J. Appl. Math. & Computing13 (2003), 233–245.

    MATH  MathSciNet  Google Scholar 

  11. F. Liu, V. Anh, I. Turner and P. Zhuang,Numerical simulation for solute transport in fractal porous media, ANZIAM J.45(E) (2004), 461–473.

    MathSciNet  Google Scholar 

  12. F. Liu, S. Shen, V. Anh and I. Turner,Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J.46(E) (2005), 488–504.

    MathSciNet  Google Scholar 

  13. B. Luisa and O. Enzo,The telegraph processes stopped at stable-distributed times and its connection with the fractional telegraph equation, Fract. Calc. Appl. Anal.6(2) (2003), 187–204.

    MATH  MathSciNet  Google Scholar 

  14. F. Mainardi,The fundamental solutions for the fractional diffusiona-wave equation, Appl. Math.9(6) (1996), 23–28.

    MATH  MathSciNet  Google Scholar 

  15. M. Meerschaert and C. Tadjeran,Finite difference approximations for two-sided spacefractional partial differential equations, (2005), to appear.

  16. M. Meerschaert and C. Tadjeran,Finite difference approximations for fractional advection-dispersion flow equations, J. Comp. and Appl. Math. (2005), (in press).

  17. I. Podlubny,Fractional Differential Equations, Academic Press, 1999.

  18. W. R. Schneider and W. Wyss,Fractional diffusion and wave equations, J. Math. Phys.30 (1989), 134–144.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Wyss,The fractional diffusion equation, J. Math. Phys.27 (1986), 2782–2785.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, P., Liu, F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006). https://doi.org/10.1007/BF02832039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02832039

AMS Mathematics Subject Classification

Key words and phrases

Navigation