Skip to main content
Log in

A generalized model for the uniaxial isothermal deformation of a viscoelastic body

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Using the notion of a fractional derivative we formulate a new model for a uniaxial deformation of a visco-elastic body. The basic assumption is that all derivatives σ(γ) with respect to time of the stress depend (with specified weighting factor) on all derivatives ε(γ) with respect to time of the strain (multiplied with another weighting factor), for 0≤γ≤1. In this respect our model is a generalization of the Zener model, i.e., it is a Zener fractional model with infinitely many terms. The relation between stress and strain is given in explicit form. For two specific choices of parameters the behavior of the model under suddenly applied stress (creep) and suddenly applied strain (stress relaxation) are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. National Bureau of Standards (Appl. Math. Series 55), 3rd ed., 1965.

  2. Atanackovic, T. M.: A modified Zener model of a viscoelastic body. Continuum Mech. Thermodyn.14, 137–148 (2002).

    Google Scholar 

  3. Atanackovic, T. M., Stankovic, B.: Dynamics of a fractional derivative type of a viscoelastic rod. ZAMM82, 377–386 (2002).

    Google Scholar 

  4. Baclic, B. S., Atanackovic, T. M.: Stability and creep of a fractional order viscoelastic rod. Bull. de l'Académie Serbe des Sciences et des Arts. Classe des Sciences Mathématiques et Naturelles25, 115–131 (2000).

    Google Scholar 

  5. Bagley, R. L., Torvik, P. J.: On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech.51, 294–298 (1984).

    Google Scholar 

  6. Bagley, R. L., Torvik, P. J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J.23, 201–210 (1985).

    Google Scholar 

  7. Bagley, R. L., Torvik, P. J.: On the fractional calculus model of viscoelastic behavior. J. Rheol.30, 133–155 (1986).

    Google Scholar 

  8. Bagley, R. L.: Power law and fractional calculus model of viscoelasticity. AIAA J.27, 1412–1417 (1988).

    Google Scholar 

  9. Bagley, R. L., Torvik, P. J.: On the existence of the order domain and the solution of distributed order equations, Part I. Int. J. Appl. Math.2, 865–882 (2000).

    Google Scholar 

  10. Bagley R. L., Torvik, P. J.: On the existence of the order domain and the solution of distributed order equations, Part II. Int. J. Appl. Math.2, 965–987 (2000).

    Google Scholar 

  11. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fractional Calculus and Applied Analysis4, 421–442 (2001).

    Google Scholar 

  12. Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation in der Z-Transformation. München: Oldenburg 1967.

    Google Scholar 

  13. Erdelyi, A.: Higher transcendental functions, vol1. New York: McGraw-Hill 1955.

    Google Scholar 

  14. Folland, G. B.: Real analysis. New York: Wiley 1984.

    Google Scholar 

  15. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and fractional calculus in continuum mechanics (Carpinteri, A., Mainardi, F., eds.), pp. 223–276. Wien: Springer 1997.

    Google Scholar 

  16. Komatsu, H.: Solution of differential equations by means of Laplace hyperfunktions. In: Structure of solutions of differential equations (Katata/Kyoto, 1995), pp. 227–252. River Edge, NJ: World Scientific 1996.

    Google Scholar 

  17. Lion, A.: On the thermodynamics of fractional damping elements. Continuum Mech. Thermodyn.9, 83–96 (1997).

    Google Scholar 

  18. Oldham, K. B., Spanier, J.: The fractional calculus. New York: Academic Press 1974.

    Google Scholar 

  19. Papoulia, K.-D., Kelly, J. M.: Visco-hyperelastic model for filled rubbers used in vibration insolation. J. Engng Mater. Technol. (Trans. ASME)119, 292–297 (1997).

    Google Scholar 

  20. Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vibr.195, 103–115 (1996).

    Google Scholar 

  21. Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional integrals and derivatives. Amsterdam: Gordon and Breach 1993.

    Google Scholar 

  22. Stankovic, B.: Laplace transform of Laplace hyperfunctions and its applications. Novi Sad J. Math.31, 9–17 (2001).

    Google Scholar 

  23. Verhás, J., Müller, Z.: Thermodynamic theory and classification of models in linear viscoelasticity. Mûanyag és Gumi14, 49–54 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanackovic, T.M. A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mechanica 159, 77–86 (2002). https://doi.org/10.1007/BF01171449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171449

Keywords

Navigation