Skip to main content
Log in

Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, high-order finite difference methods are proposed to solve the initial-boundary value problem for space Riesz variable-order fractional diffusion equations. Based on weighted-shifted-Grünwald-difference (WSGD) operators proposed in Lin and Liu (J. Comput. Appl. Math. 363, 77–91 (2020)) for Riemann-Liouville fractional derivatives, we derive WSGD operators for variable-order ones by using the relation between variable-order fractional derivative and (constant-order) fractional derivative. We then apply Crank-Nicolson-weighted-shifted-Grünwald-difference (CN-WSGD) schemes to the initial-boundary problem for space Riesz variable-order diffusion equations. Theoretical results on the stability and convergence of CN-WSGD schemes are presented and proved. Moreover, we derive a problem-based method to choose suitable CN-WSGD schemes, which leads to unconditioned stable linear systems with optimal upper bound for accuracy. Numerical results show that the proposed schemes are very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abd-Elhameed, W.M., Youssri, Y.H.: Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn. 89, 1341–1355 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Abd-Elhameed, W.M., Youssri, Y.H.: Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comp. Appl. Math. 37, 2897–2921 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abd-Elhameed, W.M., Youssri, Y.H.: Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol. Trans. Sci. 43, 543–554 (2019)

    MathSciNet  Google Scholar 

  4. Abd-Elhameed, W.M., Youssri, Y.H.: Sixth-kind Chebyshev spectral approach for solving fractional differential equations. IJNSNS 20, 191–203 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Physica A: Statistical Mechanics and its Applications 500, 40–49 (2018)

    MathSciNet  Google Scholar 

  6. Bai, J., Feng, X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc. 16, 2492–2502 (2007)

    MathSciNet  Google Scholar 

  7. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Google Scholar 

  8. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Google Scholar 

  9. Cao, J., Qiu, Y.: A high order numerical scheme for variable order fractional ordinary differential equation. Appl. Math. Let. 61, 88–94 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Cao, J., Qiu, Y., Song, G.: A compact finite difference scheme for variable order subdiffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 48, 140–149 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096–5103 (2001)

    Google Scholar 

  12. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189, 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM. J. Numer. Anal. 47, 204–226 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Diethelm, K.: The Analysis of Fractional Differential Equations. Spring, Berlin (2010)

    MATH  Google Scholar 

  16. Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Baleanu, D.: Spectral technique for solving variable-order fractional Volterra integro-differential equations. Numer. Methods Partial Differ. Equ. 34, 1659–1677 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent,nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Feller, W.: On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Medd. Lunds Univ. Mat. Sem. 1952, 72–81 (1952)

    MathSciNet  Google Scholar 

  20. Hafez, R.M., Youssri, Y.H.: Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comp. Appl. Math. 37, 5315–5333 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Henry, B.I., Wearne, S.L.: Fractional reaction-diffusion. Physica A 276, 448–455 (2000)

    MathSciNet  Google Scholar 

  22. Khalid, A., Naeem, M.N., Agarwal, P., Ghaffar, A., Ullah, Z., Jain, S.: Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline. Advances in Difference Equations 2019, 492 (2019)

    MathSciNet  Google Scholar 

  23. Jin, X.Q.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  24. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Li, C., Deng, W.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, 543–572 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Lin, F.R., Liu, W.D.: The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation. J. Comput. Appl. Math. 363, 77–91 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435–445 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Lin, X.L., Ng, M.K., Sun, H.W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT Numer. Math. 58(3), 729–748 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers Inc., U.S. (2006)

    Google Scholar 

  33. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  36. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  38. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002)

    MATH  Google Scholar 

  39. Ruiz-Medina, M.D., Anh, V., Angulo, J.M.: Fractional generalized random fields of variable order. Stochastic Anal. Appl. 22, 775–799 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem. Entropy 17, 885–902 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Newark, NJ (1993)

    MATH  Google Scholar 

  42. Seki, K., Wojcik, M., Tachiya, M.: Fractional reaction-diffusion equation. J. Chem. Phys. 119, 2165–2174 (2003)

    Google Scholar 

  43. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987)

    MathSciNet  Google Scholar 

  45. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Google Scholar 

  46. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Tariboon, J., Ntouyas, S.K, Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Advances in Difference Equations 2015, 18 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Zeng, F.H., Zhang, Z.Q., EmKarniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, X., Sun, Z.Z., EmKarniadakis, G.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    MathSciNet  Google Scholar 

  51. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referees for providing valuable comments and suggestions, which are very helpful for improving our paper.

Funding

This work is supported by National Natural Science Foundation of China (11771265) and the research grants MYRG2016-00077-FST, MYRG2019-00042-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Rong Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, FR., Wang, QY. & Jin, XQ. Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations. Numer Algor 87, 601–631 (2021). https://doi.org/10.1007/s11075-020-00980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00980-z

Keywords

Mathematics Subject Classification (2010)

Navigation