Skip to main content
Log in

Temporal Second-Order Fast Finite Difference/Compact Difference Schemes for Time-Fractional Generalized Burgers’ Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Two kinds of numerical schemes are investigated for time-fractional generalized Burgers’ equations (TFGBE). The first kind is obtained by the temporal second-order fast finite difference approach for the TFGBE with Dirichlet boundary conditions, and the second kind is obtained by the temporal second-order fast finite compact difference approach for TFGBE with periodic boundary conditions. In the time direction, both schemes employ nonuniform meshes to overcome the initial singularity, where the nonuniform Alikhanov formula with the sum-of-exponentials is used to approximate the time-fractional derivative. As a result, this allows the time direction to achieve second-order accuracy and saves a lot of computational costs. In the space direction, the classical second-order difference formulae are used to discretize the spatial derivatives in the finite difference scheme, which can arrive at second-order accuracy. The developed compact difference formulae are employed to approach the spatial derivatives in the compact difference scheme, which can allow the space direction to achieve fourth-order accuracy. For the two difference schemes, we carry out detailed theoretical analysis, including solvability, boundedness, and convergence analysis. In addition, we provide several numerical examples to test the effectiveness of the proposed fast difference/compact difference schemes and to verify the correctness of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author upon reasonable request.

References

  1. Brio, M., Hunter, J.K.: Mach reflection for the two-dimensional Burgers equation. Phys. D Nonlinear Phenom. 60(1–4), 194–207 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bouchaud, J.P., Mézard, M.: Velocity fluctuations in forced Burgers turbulence. Phys. Rev. E 54(5), 5116 (1996)

    Article  Google Scholar 

  3. Laforgue, J.G.L., O’Malley, R.E., Jr.: Shock layer movement for Burgers’ equation. SIAM J. Appl. Math. 55(2), 332–347 (1995)

    Article  MathSciNet  Google Scholar 

  4. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    Article  MathSciNet  Google Scholar 

  5. Hopf, E.: The partial differential equation \(u_t+uu_x=\mu u_{xx}\). Technique report, Indiana Univ at Bloomington (1950)

  6. Fletcher, C.A.J.: Generating exact solutions of the two-dimensional Burgers’ equations. Int. J. Numer. Methods Fluids 3, 213–216 (1983)

    Article  Google Scholar 

  7. Hendy, A.S., Zaky, M.A., Tenreiro Machado, J.A.: On the Cole–Hopf transformation and integration by parts formulae in computational methods within fractional differential equations and fractional optimal control theory. J. Vib. Control 28(21–22), 3364–3370 (2022)

    Article  MathSciNet  Google Scholar 

  8. Qiu, W., Chen, H., Zheng, X.: An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput. Simul. 166, 298–314 (2019)

    Article  MathSciNet  Google Scholar 

  9. Peng, X., Xu, D., Qiu, W.: Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation. Math. Comput. Simul. 208, 702–726 (2023)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Q., Qin, Y., Wang, X., et al.: The study of exact and numerical solutions of the generalized viscous Burgers’ equation. Appl. Math. Lett. 112, 106719 (2021)

    Article  MathSciNet  Google Scholar 

  11. Guo, T., Xu, D., Qiu, W.: Efficient third-order BDF finite difference scheme for the generalized viscous Burgers’ equation. Appl. Math. Lett. 140, 108570 (2023)

    Article  MathSciNet  Google Scholar 

  12. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40(11–12), 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  13. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  14. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  15. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  16. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)

    Article  MathSciNet  Google Scholar 

  17. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52(2), 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  18. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  Google Scholar 

  19. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  20. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  21. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  24. Liao, H., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30, 567–601 (2021)

    Article  MathSciNet  Google Scholar 

  25. Liao, H., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection–diffusion problem. SIAM J. Numer. Anal. 39(4), 1446–1467 (2001)

    Article  MathSciNet  Google Scholar 

  27. Liao, H., McLean, W., Zhang, J.: A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  28. Li, X., Liao, H., Zhang, L.: A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer. Algorithms 86, 1011–1039 (2021)

    Article  MathSciNet  Google Scholar 

  29. Jiang, S., Zhang, J., Zhang, Q., et al.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  30. Guo, B.: A class of difference scheme for two-dimensional vorticity equations with viscous fluids. Acta Math. Sin. 17(4), 242–258 (1974)

    MathSciNet  Google Scholar 

  31. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45(172), 417–437 (1985)

    Article  MathSciNet  Google Scholar 

  32. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)

    Article  MathSciNet  Google Scholar 

  33. Sun, Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  34. Zhang, Q., Wang, X., Sun, Z.: The pointwise estimates of a conservative difference scheme for Burgers’ equation. Numer. Methods Partial Differ. Equ. 36(6), 1611–1628 (2020)

    Article  MathSciNet  Google Scholar 

  35. Song, K., Lyu, P.: A high-order and fast scheme with variable time steps for the time-fractional Black–Scholes equation. Math. Methods Appl. Sci. 46(2), 1990–2011 (2023)

    Article  MathSciNet  Google Scholar 

  36. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    Article  MathSciNet  Google Scholar 

  37. Li, S., Kravchenko, O.V., Qu, K.: On the \(L^\infty \) convergence of a novel fourth-order compact and conservative difference scheme for the generalized Rosenau-KdV-RLW equation. Numer. Algorithms 94, 1–28 (2023)

    Article  MathSciNet  Google Scholar 

  38. Dimitrienko, Y.I., Li, S., Niu, Y.: Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme. Math. Comput. Simul. 182, 661–689 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable suggestions which enhance the quality of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenlin Qiu, Ahmed S. Hendy or Mahmoud A. Zaky.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Proof of Uniqueness for the Proposed Fast Difference Scheme (17)–(20)

Appendix: The Proof of Uniqueness for the Proposed Fast Difference Scheme (17)–(20)

To obtain the uniqueness result, we first invoke the following two lemmas.

Lemma A1

[33] For any grid function \(\phi \in \mathring{{\mathcal {V}}}_h\), there exists inverse estimate

$$\begin{aligned} |\phi |_1\le \frac{2}{h}\Vert \phi \Vert . \end{aligned}$$

In addition, by combing the third inequality of Lemma 2, we also have

$$\begin{aligned} \Vert \phi \Vert _\infty \le \sqrt{L}h^{-1}\Vert \phi \Vert . \end{aligned}$$
(A1)

Lemma A2

Suppose that \(\{ u_r^n, \phi _r^n\}\) is the solution of the fast difference scheme (17)–(20). Based on the conditions of Theorem 4, and if \(\rho \alpha \ge 2\), the spatial step \(h \le 1\) and the maximum temporal step \(\tau \) satisfies

$$\begin{aligned} \tau \le \min \{{1}/{\root \eta \of {2{\mathfrak {P}}_A\varGamma (2-\eta )c_3}},\sqrt{h}\}, \end{aligned}$$

then for any \(0\le n \le N\), we have

$$\begin{aligned} |u^n|_1\le C, \quad \Vert u^n\Vert _\infty \le C. \end{aligned}$$
(A2)

Proof

When \(\rho \alpha \ge 2\), then the inequality (44) becomes

$$\begin{aligned} \Vert e^n\Vert \le C(\tau ^2+h^2), \quad 0\le n \le N, \end{aligned}$$

and combing the inverse estimate and (A1), we have

$$\begin{aligned} \begin{aligned}&|e^n|_1 \le 2h^{-1}\Vert e^n\Vert \le 2Ch^{-1}(\tau ^2+h^2),\quad 0\le n \le N,\\&\Vert e^n\Vert _\infty \le \sqrt{L}h^{-1}\Vert e^n\Vert \le \sqrt{L}Ch^{-1}(\tau ^2+h^2), \quad 0\le n \le N. \end{aligned} \end{aligned}$$

When \(h\le 1\) and \(\frac{\tau ^2}{h}\le 1\) i.e., \(\tau \le \sqrt{h}\), we can get

$$\begin{aligned} | e^n|_1 \le C, \quad \Vert e^n\Vert _\infty \le C. \end{aligned}$$

Finally, we can obtain

$$\begin{aligned} \begin{aligned}&|u^n|_1 \le |U^n|_1+|e^n|_1 \le c_0+C\le C,\\&\Vert u^n\Vert _\infty \le \Vert U^n\Vert _\infty +\Vert e^n\Vert _\infty \le c_0+C\le C. \end{aligned} \end{aligned}$$

This accomplished the proof. \(\square \)

Remark 4

It is worth noting that the assumption of \(\rho \alpha \ge 2\) is intended to be concise and easy to understand. Although \(\rho \alpha < 2\), we only need to adjust the restriction condition of the maximum temporal step \(\tau \le \root \rho \alpha \of {h}\), the conclusion of Lemma A2 also holds.

Proof of Theorem 2

Let \(\{ \tilde{u}^n,\;\tilde{\phi }^n \in \mathring{{\mathcal {V}}}_h \}\) and \(\{ \hat{u}^n,\;\hat{\phi }^n \in \mathring{{\mathcal {V}}}_h \}\) be the solutions of the fast difference scheme (17)–(20), respectively, then we have

figure j

and

figure k

For convenience, let

$$\begin{aligned} \bar{u}_r^n=\tilde{u}_r^{n}-\hat{u}_r^n,\quad \bar{\phi }_r^n=\tilde{\phi }_r^{n}-\hat{\phi }_r^n,\quad 0\le r\le K, \quad 0\le n\le N. \end{aligned}$$

Now, subtracting (A7)–(A10) from (A3)–(A6), respectively. Then we get

figure l

where the definition of function g is same as (37). According to the differential mean value theorem, from (A12), we have

$$\begin{aligned} |\bar{\phi }_r^{n}|=|g(\tilde{u}_r^{n})-g(\hat{u}_r^{n})|\le \tilde{c}_2|\bar{u}_r^{n}|,\quad 0\le r\le K, \quad 0\le n\le N. \end{aligned}$$

Furthermore, we have

$$\begin{aligned} \Vert \bar{\phi }^{n}\Vert \le \tilde{c}_2\Vert \bar{u}^{n}\Vert , \quad 0\le n\le N. \end{aligned}$$
(A15)

Then, taking the inner product of (A11) with \(\bar{u}^{n-\sigma }\), we obtain

$$\begin{aligned} \begin{aligned} \left\langle \left( {\mathcal {D}}_{\tau }^{\eta }\bar{u}\right) ^{n-\sigma },\bar{u}^{n-\sigma }\right\rangle&+\frac{1}{p+2}\left\langle \psi (\tilde{\phi }^{n-\sigma },\tilde{u}^{n-\sigma }) -\psi (\hat{\phi }^{n-\sigma },\hat{u}^{n-\sigma }),\bar{u}^{n-\sigma } \right\rangle \\&-\mu \left\langle \delta _x^2\bar{u}^{n-\sigma },\bar{u}^{n-\sigma } \right\rangle =0. \end{aligned} \end{aligned}$$
(A16)

Now, we shall analyze the above equation term by term. Using the Lemma 5, we have

$$\begin{aligned} \left\langle \left( {\mathcal {D}}_{\tau }^{\eta }\bar{u}\right) ^{n-\sigma },\bar{u}^{n-\sigma } \right\rangle \ge \frac{1}{2} \sum _{k=1}^{n}A_{n-k}^{(n)}\nabla _\tau (\Vert \bar{u}^k\Vert ^2). \end{aligned}$$
(A17)

According to (A2), let \(\tilde{c}_0:=\max \limits _{0\le n \le N}\Vert \tilde{u}^n\Vert _\infty \). Using Lemmas 13 and Cauchy-Schwarz inequality, Young inequality, then we have

$$\begin{aligned} \begin{aligned}&-\frac{1}{p+2}\left\langle \psi (\tilde{\phi }^{n-\sigma },\tilde{u}^{n-\sigma })-\psi (\hat{\phi }^{n-\sigma }, \hat{u}^{n-\sigma }),\bar{u}^{n-\sigma } \right\rangle \\&\quad = -\frac{1}{p+2}\left\langle \psi (\bar{\phi }^{n-\sigma },\tilde{u}^{n-\sigma })+\psi (\tilde{\phi }^{n-\sigma }, \bar{u}^{n-\sigma })-\psi (\bar{\phi }^{n-\sigma },\bar{u}^{n-\sigma }),\bar{u}^{n-\sigma } \right\rangle \\&\quad =-\frac{1}{p+2}\left\langle \psi (\bar{\phi }^{n-\sigma },\tilde{u}^{n-\sigma }),\bar{u}^{n-\sigma } \right\rangle \\&\quad =-\frac{h}{p+2}\sum _{r=1}^{K-1}\left[ \bar{\phi }_r^{n-\sigma }\varDelta _x\tilde{u}_r^{n-\sigma } +\varDelta _x(\bar{\phi }_r^{n-\sigma }\tilde{u}_r^{n-\sigma })\right] \bar{u}_r^{n-\sigma }\\&\quad =-\frac{h}{p+2}\sum _{r=1}^{K-1}\left[ \bar{\phi }_r^{n-\sigma }\varDelta _x\tilde{u}_r^{n-\sigma }\bar{u}_r^{n-\sigma } -\bar{\phi }_r^{n-\sigma }\tilde{u}_r^{n-\sigma }\varDelta _x\bar{u}_r^{n-\sigma }\right] \\&\quad \le \frac{c^\star }{p+2} \Vert \bar{\phi }^{n-\sigma }\Vert \Vert \bar{u}^{n-\sigma }\Vert +\frac{\tilde{c}_0}{p+2} \Vert \bar{\phi }^{n-\sigma }\Vert |\bar{u}^{n-\sigma }|_1\\&\quad \le \frac{c^\star \tilde{c}_2}{p+2} \Vert \bar{u}^{n-\sigma }\Vert ^2+\frac{\tilde{c}_0\tilde{c}_2}{p+2} \Vert \bar{u}^{n-\sigma }\Vert |\bar{u}^{n-\sigma }|_1 \\&\quad \le \frac{c^\star \tilde{c}_2}{p+2} \Vert \bar{u}^{n-\sigma }\Vert ^2+\frac{\tilde{c}_0^2\tilde{c}_2^2}{4\mu (p+2)^2} \Vert \bar{u}^{n-\sigma }\Vert ^2+\mu |\bar{u}^{n-\sigma }|_1^2, \end{aligned} \end{aligned}$$
(A18)

where \(c^\star \) is a positive constant, from which we use the fact, for any \(1\le r \le K-1\) and \(1\le n \le N\) that

$$\begin{aligned} \begin{aligned} |\varDelta _x\tilde{u}_r^{n-\sigma }|&=\left| \frac{\tilde{u}_{r+1}^{n-\sigma }-U_{r+1}^{n-\sigma }+U_{r+1}^{n-\sigma } -U_{r-1}^{n-\sigma }+U_{r-1}^{n-\sigma }-\tilde{u}_{r-1}^{n-\sigma }}{2h} \right| \\&\le \frac{1}{2h}\Vert e^{n-\sigma }\Vert _\infty +|u_x(\xi _r,t_{n-\sigma })|+\frac{1}{2h}\Vert e^{n-\sigma }\Vert _\infty \\&\le \sqrt{L}h^{-2}\Vert e^{n-\sigma }\Vert +c_0 \le \sqrt{L}C(\frac{\tau ^2}{h^2}+1)+c_0, \end{aligned} \end{aligned}$$

in which, we only need to limit \(\tau /h \le 1\), i.e., \(\tau \le h\) we have \(|\varDelta _x\tilde{u}_r^{n-\sigma }|\le c^\star \). In addition,

$$\begin{aligned} -\mu \left\langle \delta _x^2\bar{u}^{n-\sigma },\bar{u}^{n-\sigma } \right\rangle =\mu |\bar{u}^{n-\sigma }|_1^2. \end{aligned}$$
(A19)

Substituting the results of (A17)–(A19) into (A16), we have

$$\begin{aligned} \begin{aligned} \frac{1}{2} \sum _{k=1}^{n}A_{n-k}^{(n)}\nabla _\tau (\Vert \bar{u}^k\Vert ^2) \le \left( \frac{c^\star \tilde{c}_2}{p+2}+\frac{\tilde{c}_0^2\tilde{c}_2^2}{4\mu (p+2)^2}\right) \Vert \bar{u}^{n-\sigma }\Vert ^2. \end{aligned} \end{aligned}$$

Denote \(\tilde{c}_3:=\frac{2c^\star \tilde{c}_2}{p+2}+\frac{\tilde{c}_0^2\tilde{c}_2^2}{2\mu (p+2)^2}\), we have

$$\begin{aligned} \sum _{k=1}^{n}A_{n-k}^{(n)}\nabla _\tau (\Vert \bar{u}^k\Vert ^2) \le \tilde{c}_3 \Vert \bar{u}^{n-\sigma }\Vert ^2. \end{aligned}$$
(A20)

We observe that the above inequality satisfies the conditions of Lemma 6, that is, \(v ^k=\Vert \bar{u}^k\Vert ,~\lambda _0=\tilde{c}_3\), \(\lambda _l=0\) for \(l\ge 1\), and \(\xi ^n=0\). Therefore, we can obtain by Lemma 6 that

$$\begin{aligned} \Vert \bar{u}^n\Vert \le 2E_\eta \Big (\frac{7}{2}{\mathfrak {P}}_A \tilde{c}_3t_n^\eta \Big )\Vert \bar{u}^0\Vert =0, \quad 1\le n\le N. \end{aligned}$$

However, \(\Vert \bar{u}^n\Vert \ge 0\). Thus, \(\Vert \tilde{u}^n-\hat{u}^n\Vert =0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Qiu, W., Hendy, A.S. et al. Temporal Second-Order Fast Finite Difference/Compact Difference Schemes for Time-Fractional Generalized Burgers’ Equations. J Sci Comput 99, 52 (2024). https://doi.org/10.1007/s10915-024-02514-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02514-4

Keywords

Navigation