Skip to main content
Log in

A Highly Efficient Numerical Method for the Time-Fractional Diffusion Equation on Unbounded Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a fast high order method for the time-fractional diffusion equation on unbounded spatial domains. The proposed numerical method is a combination of a time-stepping scheme and spectral method for the spatial discretization. First, we reformulate the unbounded domain problem into a bounded domain problem by introducing suitable artificial boundary conditions. Then the time fractional derivatives involved in the equation and the artificial boundary condition are discretized using the so-called L2 formula and sum-of-exponentials (SOE) approximation. The former has been a popular formula for discretization of the Caputo fractional derivative, while the latter is a computational cost reducing technique frequently employed in recent years for convolution integrals. The spatial discretization makes use of the standard Legendre spectral method. The stability and the accuracy of the full discrete problem are analyzed. Our obtained theoretical results include a rigorous proof of the convergence order for both uniform mesh and graded mesh, and a stability proof for the uniform mesh. Finally, several numerical examples are provided to validate the theoretical results and to demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility

Data will be made available on request.

References

  1. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Antoine, X., Arnold, A., Besse, C.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear schr\(\ddot{\text{ o }}\)dinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  Google Scholar 

  3. Baffet, D., Hesthaven, J.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)

    Article  MathSciNet  Google Scholar 

  4. Baffet, D., Hesthaven, J.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bernardi, C., Maday, Y.: Approximations spectrales de problémes aux limites elliptiques. Springer, Berlin (1992)

    Google Scholar 

  6. Dixon, J., McKee, S.: Weakly singular discrete Gronwall inequalities. ZAMM Z. Angew. Math. Mech. 66, 535–544 (1986)

    Article  MathSciNet  Google Scholar 

  7. Ford, N., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gao, G., Sun, Z.: The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain. J. Comput. Phys. 236(1), 443–460 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gao, G., Sun, Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259(2), 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gao, G., Sun, Z., Zhang, Y.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231(7), 2865–2879 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dynam. 29(1–4), 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  12. Han, H., Wu, X.: Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. 3(2), 179–192 (1985)

    MathSciNet  Google Scholar 

  13. Han, H., Zhu, L., Brunner, H., Ma, J.: Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains. J. Comput. Appl. Math. 197(2), 406–420 (2006)

    Article  MathSciNet  Google Scholar 

  14. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  16. Kochubei, A., Luchko, Y.: Handbook of fractional calculus with applications. Volume 1: basic theory. De Gruyter (2019)

  17. Liao, H., Liu, N., Zhao, X.: Asymptotically compatible energy of variable-step fractional BDF2 formula for time-fractional Cahn-Hilliard model. arXiv:2210.12514v1. 1–21 (2022)

  18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  20. Lubich, C.: Convolution Quadrature and Discretized Operational Calculus: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  21. Lv, C., Xu, C.: Improved error estimates of a finite difference/spectral method for time-fractional diffusion equations. Int. J. Numer. Anal. Mod. 12(2), 384–400 (2015)

    MathSciNet  Google Scholar 

  22. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equation. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  23. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. J. Sci. Comput. 34(6), A3039–A3056 (2012)

    MathSciNet  Google Scholar 

  24. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  25. Quan, C., Wu, X.: \(H^1\)-stability of an L2-type method on general nonuniform meshes for subdiffusion equation. arXiv:2205.06060v1. 1–31 (2023)

  26. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer, Berlin (1997)

    Google Scholar 

  27. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  28. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  29. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  30. Tsynkov, S.: Numerical solution of problems on unbounded domains: a review. Appl. Numer. Math. 27(4), 465–532 (1998)

    Article  MathSciNet  Google Scholar 

  31. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77(1), 283–307 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zeng, F., Zhang, Z., Karniadakis, G.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q., Zhang, J., Jiang, S., Zhang, Z.: Numerical solution to a linearized time fractional KdV equation on unbounded domians. Math. Comput. 87(310), 693–719 (2018)

    Article  Google Scholar 

  35. Zheng, C., Wen, X., Han, H.: Numerical solution to a linearized KdV equation on unbounded domian. Numer. Methods Partial Differ. Equ. 24(2), 383–399 (2010)

    Article  Google Scholar 

  36. Zhu, H., Xu, C.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 57(6), 2829–2849 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of Hongyi Zhu is supported by the National Natural Science Foundation of China grant 12001238, China Postdoctoral Science Foundation funded project grant 2021M691248. Chuanju Xu is supported by the National Natural Science Foundation of China grant 12371408.

Author information

Authors and Affiliations

Authors

Contributions

HZ: Conceptualization, Methodology, Software, Validation, Writing-original draft. CX: Conceptualization, Methodology, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Chuanju Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To prove Lemma 3.3, the following Lemma presenting properties of the coefficients \(d^{k,\alpha }_{k-j}\) will be needed, we refer to [36] for proof.

Lemma 7.1

For any \(0<\alpha <1\), \(k\ge 3\), \(n\ge k\), the coefficients \(d^{k,\alpha }_{k-j}\) in (3.16) satisfy

  1. (1)

    \(\displaystyle 0< d^{k,\alpha }_{k-1} < \frac{4}{3};\)    

  2. (2)

    \(\displaystyle -\frac{1}{2}< d^{k,\alpha }_{k-2}<\frac{1}{3} \);    

  3. (3)

    \(\displaystyle d^{k,\alpha }_{k-j} > 0,j=3,\dots ,k;\)    

  4. (4)

    \(\displaystyle \sum ^{k}_{j=1}d^{k,\alpha }_{k-j}=1;\)

  5. (5)

    \(\displaystyle \sum ^{n}_{k=2}{d}^{k,\alpha }_{0}\le (2-\alpha )(n-1)^{1-\alpha };\)

  6. (6)

    \(\displaystyle \sum ^{n}_{k=2}{d}^{k,\alpha }_{1}\le \displaystyle \frac{4}{3}+(2-\alpha )(n-2)^{1-\alpha };\)

  7. (7)

    \(\displaystyle \sum ^{n}_{k=j+1}{d}^{k,\alpha }_{j}\le 1, \ j=2,\dots , n-2\);

  8. (8)

    \(d^{k,\alpha }_{k-j}=d^{k+1,\alpha }_{k-j+1}, j=1,\ldots ,k-2\).

Proof of Lemma 3.3

We start with proving (i). We only prove (i.1) since (i.2)–(i.5) can be proved in a similar way as Lemma 3.2.

  • For \(k\ge 4\), it follows from (3.2) (3.3) and (3.18) that

    $$\begin{aligned} \displaystyle \overline{d}^{k,{\alpha /2}}_{k-1}= & {} {d}^{k,{\alpha /2}}_{k-1} -\frac{1}{2}{d}^{k,\alpha }_{k-1}=3-\frac{{\alpha /2}+4}{{\alpha /2}+2}{\big (\frac{3}{2}\big )}^{1-{\alpha /2}} -\frac{1}{2}\Big [3-\frac{\alpha +4}{\alpha +2}{\big (\frac{3}{2}\big )}^{1-\alpha }\Big ],\\ \displaystyle \overline{d}^{k,{\alpha /2}}_{k-2}= & {} {d}^{k,{\alpha /2}}_{k-2}+\eta ({d}^{k,{\alpha /2}}_{k-1}-\eta )\\= & {} \displaystyle \frac{\alpha +8}{\alpha +4}{\big (\frac{3}{2}\big )}^{2-{\alpha /2}} +\frac{1}{2}\frac{\alpha +8}{\alpha +2}{\big (\frac{3}{2}\big )}^{2-3{\alpha /2}} -\frac{1}{4}{\big (\frac{\alpha +4}{\alpha +2}\big )}^2{\big (\frac{3}{2}\big )}^{2-2\alpha }\\{} & {} -\frac{3}{4} -\frac{\alpha +12}{\alpha +4}2^{1-{\alpha /2}}. \end{aligned}$$

    Now we show \(\overline{d}^{k,{\alpha /2}}_{k-i}>0 \ (i=1,2)\) one by one. Let \(\displaystyle g(x)=3-\frac{x+4}{x+2}{\big (\frac{3}{2}\big )}^{1-x}\), since the derivative function \(\displaystyle g'(x)={(\frac{3}{2})}^{1-x}\Big [\frac{2}{{(x+2)}^2}+\frac{x+4}{x+2}\ln \frac{3}{2}\Big ]\) is decreasing on [0, 1], then

    $$\begin{aligned}\displaystyle \overline{d}^{k,{\alpha /2}}_{k-1}=g({\alpha /2})-\frac{1}{2}g(\alpha ) =g(\frac{\alpha +0}{2})-\frac{g(\alpha )+g(0)}{2}>0.\end{aligned}$$

    Next, a careful calculation shows

    $$\begin{aligned}{} & {} \displaystyle 2^{3+\alpha /2}(\alpha +2)^2(\alpha +4)\overline{d}^{k,{\alpha /2}}_{k-2}\\{} & {} \quad =\displaystyle 2^{{\alpha /2}}\big [18{(\alpha +2)}^2(\alpha +8)\big (\frac{3}{2}\big )^{-{\alpha /2}} +9(\alpha +2)(\alpha +4)(\alpha +8)\big (\frac{3}{2}\big )^{-3{\alpha /2}}\\{} & {} \qquad \displaystyle -\frac{9}{2}{(\alpha +4)}^3\big (\frac{3}{2}\big )^{-2\alpha }-6{(\alpha +2)}^2(\alpha +4)\big ] -16{(\alpha +2)}^2(\alpha +12)\\{} & {} \quad \ge \displaystyle \big (1+\frac{\alpha }{3}+\frac{1}{13}{\alpha }^2+\frac{1}{255}{\alpha }^3\big )\Big \{18{(\alpha +2)}^2(\alpha +8) \big [1+\sum _{i=1}^9\frac{(-\frac{\alpha }{2})\cdots (-\frac{\alpha }{2}-i+1)}{i!}\frac{1}{2^i}\big ]\\{} & {} \qquad +\displaystyle 9(\alpha +2)(\alpha +4)(\alpha +8)\big [1+\sum _{i=1}^9 \frac{(-\frac{3\alpha }{2})\cdots (-\frac{3\alpha }{2}-i+1)}{i!}\frac{1}{2^i}\big ]\\{} & {} \qquad \displaystyle -\frac{9}{2}{(\alpha +4)}^3\big [1+\sum _{i=1}^{10} \frac{(-2\alpha )\cdots (-2\alpha -i{+}1)}{i!}\frac{1}{2^{i}}\big ] -6{(\alpha +2)}^2(\alpha +4)\Big \}-16{(\alpha +2)}^2(\alpha +12)\\{} & {} \quad =\displaystyle \frac{89}{14}\alpha -\frac{1017593}{436800}\alpha ^2+\alpha ^3\Big (\frac{6796887131}{712857600}-\frac{75894521561}{17108582400}\alpha -\frac{74831376457}{26320896000}\alpha ^2\\{} & {} \qquad -\frac{1623224922073}{1368686592000}\alpha ^3-\frac{3521490017653}{5474746368000}\alpha ^4\\{} & {} \displaystyle -\frac{2854730671973}{10949492736000}\alpha ^5-\frac{75386416843}{912457728000}\alpha ^6-\frac{10640668967}{521404416000}\alpha ^7-\frac{20152333777}{5152702464000}\alpha ^8\\{} & {} \qquad -\frac{99934568449}{175191883776000}\alpha ^9\displaystyle -\frac{10839693427}{175191883776000}\alpha ^{10}-\frac{817537909}{175191883776000}\alpha ^{11}\\{} & {} \qquad -\frac{1439423}{6488588288000}\alpha ^{12}-\frac{1}{205632000}\alpha ^{13}\Big )\\\ge & {} \displaystyle \frac{89}{14}\alpha -\frac{1017593}{436800}\alpha ^2 \ge \alpha >0. \end{aligned}$$

    Furthermore, it can be verified that

    $$\begin{aligned} \overline{d}^{k,{\alpha /2}}_{k-j}={d}^{k,{\alpha /2}}_{k-j}+\eta \overline{d}^{k,{\alpha /2}}_{k-j+1}, \quad j=3,\ldots ,k. \end{aligned}$$

    Then it follows from Lemma 7.1(3) that \(\overline{d}^{k,{\alpha /2}}_{k-j}>0\), \(j=3,\ldots ,k\).

  • For \(k=3\). We find from (3.2) that \({d}^{3,{\alpha /2}}_{2}={d}^{4,{\alpha /2}}_{3}\), \({d}^{3,{\alpha /2}}_{1}>{d}^{4,{\alpha /2}}_{2}\), \({d}^{3,{\alpha /2}}_{0}>0\). As a consequence,

    $$\begin{aligned} \begin{array}{lcl} &{}&{}\overline{d}^{3,{\alpha /2}}_{2}=\overline{d}^{4,{\alpha /2}}_{3}>0,\\ &{}&{}\overline{d}^{3,{\alpha /2}}_{1}={d}^{3,{\alpha /2}}_{1}+\eta ({d}^{3,{\alpha /2}}_{2}-\eta )>{d}^{4,{\alpha /2}}_{2}+\eta ({d}^{4,{\alpha /2}}_{3}-\eta )=\overline{d}^{4,{\alpha /2}}_{2}>0,\\ &{}&{}\overline{d}^{3,{\alpha /2}}_{0}={d}^{3,{\alpha /2}}_{0}+\eta \overline{d}^{3,{\alpha /2}}_{1}>0. \end{array} \end{aligned}$$
  • For \(k=2\), a direct calculation using (3.2) gives

    $$\begin{aligned}{} & {} \overline{d}^{2,{\alpha /2}}_{1}={d}^{2,{\alpha /2}}_{1}-\eta \ge \frac{2\alpha ^2}{(\alpha +2)(\alpha +4)}>0,\\{} & {} \overline{d}^{2,{\alpha /2}}_{0} ={d}^{2,{\alpha /2}}_{0}+\eta \overline{d}^{2,{\alpha /2}}_{1} \ge {d}^{2,{\alpha /2}}_{0} =\frac{4-3\alpha }{4+\alpha }>0. \end{aligned}$$

(ii) By (3.18), we get \(\displaystyle \overline{d}^{k,\beta }_{0}=\sum ^{k}_{j=1}\eta ^{k-j}{d}^{k,\beta }_{k-j}-\eta ^{k}\). Using Lemma 7.1(5)(6)(7), and noticing that \(\displaystyle \eta =\frac{1}{2}\big [3-\frac{\alpha +4}{\alpha +2}(\frac{3}{2})^{1-\alpha }\big ]\in (0,\frac{2}{3})\), we obtain

$$\begin{aligned} \begin{array}{lcl} \displaystyle \sum ^{n}_{k=2}\overline{d}^{k,\beta }_{0} &{}=&{}\displaystyle \sum ^{n}_{k=2}\sum ^{k}_{j=1}\eta ^{k-j}{d}^{k,\beta }_{k-j}-\sum ^{n}_{k=2}\eta ^k =\sum ^{n}_{k=2}{d}^{k,\beta }_{0}+\sum ^{n-1}_{j=1}\sum ^{n}_{k=j+1}\eta ^j{d}^{k,\beta }_{j} -\sum ^{n}_{k=2}\eta ^k\\ &{}\le &{}\displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{0}+\eta \sum ^{n}_{k=2}{d}^{k,\beta }_{1} +\sum ^{n-2}_{j=2}\eta ^j\sum ^{n}_{k=j+1}{d}^{k,\beta }_{j} +\eta ^{n-1}{d}^{n,\beta }_{n-1}-\sum ^{n}_{k=2}\eta ^k\\ &{}\le &{}\displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{0}+\eta \sum ^{n}_{k=2}{d}^{k,\beta }_{1} +\eta ^{n-1}{d}^{n,\beta }_{n-1}-\eta ^{n-1}-\eta ^{n} \le \displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{0}+\eta \sum ^{n}_{k=2}{d}^{k,\beta }_{1}\\ &{}\le &{}\displaystyle \frac{4}{3}\eta +(1+\eta )(2-\beta )(n-1)^{1-\beta } \le \frac{8}{9}+\frac{5}{3}(2-\beta )(n-1)^{1-\beta }. \end{array} \end{aligned}$$

(iii) Noticing \(\displaystyle \overline{d}^{k,\beta }_{1}=\sum ^{k-1}_{j=1}\eta ^{k-j-1}{d}^{k,\beta }_{k-j} -\eta ^{k-1}\), we follow similar lines as (ii) to deduce:

$$\begin{aligned} \begin{array}{lcl} \displaystyle \sum ^{n}_{k=2}\overline{d}^{k,\beta }_{1} &{}=&{}\displaystyle \sum ^{n}_{k=2}\sum ^{k-1}_{j=1}\eta ^{k-j-1}{d}^{k,\beta }_{k-j}-\sum ^{n-1}_{k=1}\eta ^k \le \sum ^{n-1}_{j=1}\sum ^{n}_{k=j+1}\eta ^{j-1}{d}^{k,\beta }_{j}-\sum ^{n-1}_{k=1}\eta ^k\\ &{}=&{}\displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{1}+\sum ^{n-2}_{j=2}\eta ^{j-1}\sum ^{n}_{k=j+1}{d}^{k,\beta }_{j} +\eta ^{n-2}{d}^{n,\beta }_{n-1}-\sum ^{n-1}_{k=1}\eta ^k\\ &{}\le &{}\displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{1}+\eta ^{n-2}{d}^{n,\beta }_{n-1}-\eta ^{n-2}-\eta ^{n-1} \le \displaystyle \sum ^{n}_{k=2}{d}^{k,\beta }_{1} \le \displaystyle \frac{4}{3}+(2-\beta )(n-2)^{1-\beta }. \end{array} \end{aligned}$$

(iv) According to Lemma 7.1(8) and the definition of \(\overline{d}^{k,\beta }_{k-j}\) in (3.18), it is seen that

$$\begin{aligned}\overline{d}^{k,\beta }_{k-j}=\overline{d}^{k+1,\beta }_{k+1-j}, \ j=1,\ldots ,k-2, \ k\ge 3, \ \forall \beta \in (0,1).\end{aligned}$$

Then using Lemma 3.2(1) and (3), Lemma 3.3(i.1) and (i.3), we obtain: for \(j=2,\dots ,n-1\),

$$\begin{aligned} \sum ^{n}_{k=j+1}\overline{d}^{k,\beta }_{j} =\sum ^{n}_{k=j+1}\overline{d}^{n,\beta }_{n-k+j} =\sum ^{n-1}_{k=j}\overline{d}^{n,\beta }_{k} \le \sum ^{n-1}_{k=2}\overline{d}^{n,\beta }_{k} \le 1-\overline{d}^{n,\beta }_{0}-\overline{d}^{n,\beta }_{1}. \end{aligned}$$

(v) and (vi) can be derived directly from Lemma 3.3(i.4) and (i.5). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Xu, C. A Highly Efficient Numerical Method for the Time-Fractional Diffusion Equation on Unbounded Domains. J Sci Comput 99, 47 (2024). https://doi.org/10.1007/s10915-024-02508-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02508-2

Keywords

Mathematics Subject Classification

Navigation