Skip to main content
Log in

Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a generalized shear deformation theory in combination with isogeometric (IGA) approach for nonlinear transient analysis of smart piezoelectric functionally graded material (FGM) plates. The nonlinear transient formulation for plates is formed in the total Lagrange approach based on the von Kármán strains, which includes thermo-piezoelectric effects, and solved by Newmark time integration scheme. The electric potential through the thickness of each piezoelectric layer is assumed to be linear. The material properties vary through the thickness of FGM according to the rule of mixture and the Mori–Tanaka schemes. Various numerical examples are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Koizumi, M.: The concept of FGM. Ceram. Trans. Function. Graded Mater. 34, 3–10 (1993)

    Google Scholar 

  2. Wang, Z., Chen, S., Han, W.: The static shape control for intelligent structures. Finite Elem. Anal. Des. 26, 303–314 (1997)

    Article  MATH  Google Scholar 

  3. Takagi, K., Li, J.F., Yokoyama, S., Watanabe, R.: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc. 23, 1577–1583 (2003)

    Article  Google Scholar 

  4. Praveen, G.N., Reddy, J.N.: Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    Article  MATH  Google Scholar 

  5. Zhao, X., Liew, K.M.: Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 198, 2796–2811 (2009)

    Article  MATH  Google Scholar 

  6. Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Lieu-Xuan, Q.: Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT. Comput. Methods Appl. Mech. Eng. 270, 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aliaga, J.W., Reddy, J.N.: Nonlinear thermoelastric analysis of functionally graded plates using the third-order shear deformation theory. Int. J. Comput. Eng. Sci. 5, 753–779 (2004)

    Article  Google Scholar 

  8. Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T., Lieu-Xuan, Q.: A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Comput. Mater. Sci. 96, 549–558 (2015)

    Article  Google Scholar 

  9. Reddy, J.N., Kim, J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  10. Shankara, C.A., Iyegar, N.G.R.: A \(\text{ C }^{0}\) element for the free vibration analysis of laminated composite plates. J. Sound Vib. 191, 721–738 (1996)

    Article  Google Scholar 

  11. Nguyen-Thoi, T., Rabczuk, T., Lam-Phat, T., Ho-Huu, V., Phung-Van, P.: Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theor. Appl. Fract. Mech. 72, 150–163 (2014)

    Article  Google Scholar 

  12. Luong-Van, H., Nguyen-Thoi, T., Liu, G.R., Phung-Van, P.: A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Eng. Anal. Bound. Elem. 42, 8–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Comput. Methods Appl. Mech. Eng. 272, 138–159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Phung-Van, P., Thai, C.H., Nguyen-Thoi, T., Nguyen-Xuan, H.: Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Compos. B: Eng. 60, 227–238 (2014)

    Article  Google Scholar 

  15. Phung-Van, P., Luong-Van, H., Nguyen-Thoi, T., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle. Int. J. Numer. Meth. Eng. 98(13), 988–1014 (2014)

    Article  MATH  Google Scholar 

  16. He, X.Q., Ng, T.Y., Sivashanker, S., Liew, K.M.: Active control of FGM plates with intergrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)

    Article  MATH  Google Scholar 

  17. Liew, K.M., He, X.Q., Ng, T.Y., Kitipornchai, S.: Finite element piezothermo-elasticity analysis and active control of FGM plates with integrated piezoelectric sensors and actuators. Comput. Mech. 31, 350–358 (2003)

    MATH  Google Scholar 

  18. Reddy, J.N., Cheng, Z.Q.: Three-dimensional solutions of smart functionally graded plates. J. Appl. Mech. ASME 68, 234–241 (2001)

    Article  MATH  Google Scholar 

  19. Huang, X.L., Shen, H.S.: Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vib. 289, 25–53 (2006)

    Article  Google Scholar 

  20. Yang, J., Kitipornchai, S., Liew, K.M.: Non-linear analysis of thermo-electro-mechanical behavior of shear deformable FGM plates with piezoelectric actuators. Int. J. Numer. Meth. Eng. 59, 1605–32 (2004)

    Article  MATH  Google Scholar 

  21. Butz, A., Klinkel, S., Wagner, W.: A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int. J. Numer. Meth. Eng. 76, 601–635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panda, S., Ray, M.C.: Nonlinear analysis of smart functionally graded plates integrated with a layer of piezoelectric fiber reinforced composite. Smart Mater. Struct. 15, 1595–1604 (2006)

    Article  Google Scholar 

  23. Behjat, B., Khoshravan, M.R.: Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Compos. Struct. 94, 874–882 (2012)

    Article  Google Scholar 

  24. Yiqi, M., Yiming, F.: Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. J. Sound Vib. 329, 2015–2028 (2010)

    Article  Google Scholar 

  25. Vahid, F., Abdolreza, O., Peyman, Y.: Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos. Struct. 93, 2310–2321 (2011)

    Article  Google Scholar 

  26. D’Annibale, F., Rosi, G., Luongo, A.: Piezoelectric control of Hopf bifurcations: A non-linear discrete case study. Int. J. Non-Linear Mech. 80, 160–169 (2016)

    Article  Google Scholar 

  27. D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Annibale, F., Rosi, G., Luongo, A.: On the failure of the “Similar Piezoelectric Control” in preventing loss of stability by nonconservative positional forces. Zeitschrift für angewandte Mathematik and Physik 66(4), 1949–1968 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Phung-Van, P., De Lorenzis, L., Chien, Thai H., Abdel-Wahab, M., Nguyen-Xuan, H.: Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Comput. Mater. Sci. 96, 496–505 (2015)

    Google Scholar 

  30. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  32. Cazzani, A., Malagu, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21, 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cazzani, A., Malagu, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28, 139–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cuomo, M., Contraffatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  37. Aristodemo, M.: A high continuity finite element model for two-dimensional elastic structures. Comput. Struct. 21, 987–993 (1985)

    Article  MATH  Google Scholar 

  38. Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26, 1155–1175 (2010)

    Article  MATH  Google Scholar 

  39. Thai, H., Chien, Zenkour, A.M., Abdel-Wahab, A., Nguyen-Xuan, H.: A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Compos. Struct. 139, 77–95 (2016)

  40. Thai, H., Chien, Kulasegaram, S., Loc, Tran V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Compos. Struct. 141, 94–112 (2014)

  41. Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P.A., Bonisoli, E.: Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. 53, 1163–1182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thai, H., Chien, Ferreira, A.J.M., Abdel-Wahab, A., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227(5), 1225–1250 (2016)

  43. Nguyen, V.P., Nguyen-Xuan, H.: High-order B-splines based finite elements for delamination analysis of laminated composites. Compos. Struct. 102, 261–275 (2013)

    Article  Google Scholar 

  44. Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos. Struct. 123, 137–149 (2015)

    Article  Google Scholar 

  45. Loc, Tran V., Phung-Van, P., Lee, J., Abdel-Wahab, A., Nguyen-Xuan, H.: Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates. Compos. Struct. 140, 655–667 (2016)

    Article  Google Scholar 

  46. Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K.U., Bazilevs, Y., Rabczuk, T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kapoor, H., Kapania, R.: Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. Compos. Struct. 94, 3434–3447 (2012)

    Article  Google Scholar 

  48. Le-Manh, T., Lee, J.: Postbuckling of laminated composite plates using NURBS-based isogeometric analysis. Compos. Struct. 109, 286–293 (2014)

    Article  Google Scholar 

  49. Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)

    Article  Google Scholar 

  50. Hosseini, S., Joris, J.C., Remmersa, Clemens, V., Verhoosela, René de Borst.: An isogeometric solid-like shell element for non-linear analysis. Int. J. Numer. Method Eng. 95, 238–256 (2013)

  51. Hosseini, S., Joris, J.C., Remmers, Clemens, V., Verhoosel, René de Borst.: An isogeometric continuum shell element for non-linear analysis. Comput. Methods Appl. Mech. Eng. 271, 1–22 (2014)

  52. Oliver, W., Utz, W., Bernd, S.: Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn. 72, 813–835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Method Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  54. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

  55. Soldatos, K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)

    Article  MATH  Google Scholar 

  57. Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)

    Article  Google Scholar 

  58. Nguyen-Xuan, H., Thai, H., Chien, Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. B. Eng. 55, 558–574 (2013)

  59. Fung, Y.C.: Foundation of Solid Mechanics. Prentice Hall, New Jersey (1965)

    Google Scholar 

  60. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  61. Wang, S.Y., Quek, S.T., Ang, K.K.: Vibration control of smart piezoelectric composite plates. Smart Mater. Struct. 10, 637–644 (2001)

    Article  Google Scholar 

  62. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum press, New York (1969)

    Book  Google Scholar 

  63. Les Piegl, Wayne Tiller: The NURBS book. Springer 2nd edition, Germany (1997)

  64. Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., Nguyen-Xuan, H.: Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater. Struct. 22, 095026 (2013)

    Article  Google Scholar 

  65. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85, 67–94 (1959)

    Google Scholar 

  66. Reddy, J.N.: Geometrically nonlinear transient analysis of laminated composite plates. AIAA J. 21, 621–629 (1983)

    Article  MATH  Google Scholar 

  67. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)

    MATH  Google Scholar 

  68. Pica, A., Wood, R.D., Hinton, E.: Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Comput. Struct. 11, 203–215 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  69. Chen, J., Dawe, D.J., Wang, S.: Nonlinear transient analysis of rectangular composite laminated plates. Compos. Struct. 49, 129–139 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

H. Nguyen-Xuan would like to thank the Alexander von Humboldt Foundation for granting the Georg Forster Research Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Phung-Van, H. Nguyen-Xuan or M. Abdel-Wahab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung-Van, P., Tran, L.V., Ferreira, A.J.M. et al. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn 87, 879–894 (2017). https://doi.org/10.1007/s11071-016-3085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3085-6

Keywords

Navigation