Skip to main content
Log in

Nitsche’s method for two and three dimensional NURBS patch coupling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a Nitche’s method to couple non-conforming two and three-dimensional non uniform rational b-splines (NURBS) patches in the context of isogeometric analysis. We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. As we were preparing the paper for submission, we became aware of contemporary work had been presented the previous week at the US National Congress for Computational Mechanics [99] in the context of the finite cell method.

References

  1. Piegl LA, Tiller W (1996) The NURBS book. Springer, Berlin

    Google Scholar 

  2. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, San Diego

    Google Scholar 

  3. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  4. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  5. Kagan P, Fischer A, Bar-Yoseph PZ (1998) New B-spline finite element approach for geometrical design and mechanical analysis. Int J Numer Methods Eng 41(3):435–458

    Article  MATH  Google Scholar 

  6. Kagan P, Fischer A (2000) Integrated mechanically based CAE system using B-spline finite elements. Comput Aided Des 32(8–9):539–552

    Article  MATH  Google Scholar 

  7. Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072

    Article  MATH  Google Scholar 

  8. Uhm TK, Youn SK (2009) T-spline finite element method for the analysis of shell structures. Int J Numer Methods Eng 80(4):507–536

    Article  MATH  MathSciNet  Google Scholar 

  9. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    Article  MATH  Google Scholar 

  10. Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289

    Article  MATH  MathSciNet  Google Scholar 

  11. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378

    Article  MATH  MathSciNet  Google Scholar 

  12. Beirão da Veiga L, Buffa A, Lovadina C, Martinelli M, Sangalli G (2012) An isogeometric method for the Reissner–Mindlin plate bending problem. Comput Methods Appl Mech Eng 209–212:45–53

    Article  Google Scholar 

  13. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    Article  MathSciNet  Google Scholar 

  14. Benson DJ, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR (2013) Blended isogeometric shells. Comput Methods Appl Mech Eng 255:133–146

    Article  MathSciNet  Google Scholar 

  15. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(37–40):2403–2416

    Article  MATH  Google Scholar 

  16. Temizer İ, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

    Article  MATH  MathSciNet  Google Scholar 

  17. Jia L (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741

    MATH  Google Scholar 

  18. Temizer İ, Wriggers P, Hughes TJR (2012) Three-dimensional Mortar-Based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

    Article  MathSciNet  Google Scholar 

  19. De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-bases isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MATH  Google Scholar 

  20. Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

    Article  MathSciNet  Google Scholar 

  21. Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197(33–40):2976–2988

    Article  MATH  MathSciNet  Google Scholar 

  22. Manh ND, Evgrafov A, Gersborg AR, Gravesen J (2011) Isogeometric shape optimization of vibrating membranes. Comput Methods Appl Mech Eng 200(13–16):1343–1353

    Article  MATH  MathSciNet  Google Scholar 

  23. Qian X, Sigmund O (2011) Isogeometric shape optimization of photonic crystals via Coons patches. Comput Methods Appl Mech Eng 200(25–28):2237–2255

    Article  MATH  MathSciNet  Google Scholar 

  24. Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071

    Article  MATH  Google Scholar 

  25. Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209–212:87–100

    Article  MathSciNet  Google Scholar 

  26. Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Article  MathSciNet  Google Scholar 

  27. Gomez H, Hughes TJR, Nogueira X, Calo VM (2010) Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl Mech Eng 199(25–28):1828–1840

    Article  MATH  MathSciNet  Google Scholar 

  28. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229(9):3402–3414

    Article  MATH  MathSciNet  Google Scholar 

  29. Nielsen PN, Gersborg AR, Gravesen J, Pedersen NL (2011) Discretizations in isogeometric analysis of Navier-Stokes flow. Comput Methods Appl Mech Eng 200(45–46):3242–3253

    Article  MATH  MathSciNet  Google Scholar 

  30. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    Article  MATH  MathSciNet  Google Scholar 

  31. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550

    Article  MATH  MathSciNet  Google Scholar 

  32. Gómez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49–50):4333–4352

    Article  MATH  Google Scholar 

  33. Verhoosel CV, Scott MA, Hughes TJR, de Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86(1):115–134

    Article  MATH  Google Scholar 

  34. Fischer P, Klassen M, Mergheim J, Steinmann P, Müller R (2010) Isogeometric analysis of 2D gradient elasticity. Comput Mech 47:325–334

    Article  Google Scholar 

  35. Masud A, Kannan R (2012) B-splines and NURBS based finite element methods for Kohn–Sham equations. Comput Methods Appl Mech Eng 241–244:112–127

    Article  MathSciNet  Google Scholar 

  36. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41–43):5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  37. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 197(49–50):4104–4124

    Article  MATH  MathSciNet  Google Scholar 

  38. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, Le T-H, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach. Int J Numer Methods Eng 91(6):571–603

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang D, Liu W, Zhang H (2013) Novel higher order mass matrices for isogeometric structural vibration analysis. Comput Methods Appl Mech Eng 260:63–77

    Article  MathSciNet  Google Scholar 

  40. Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741

    Article  MATH  Google Scholar 

  41. Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Methods Eng 87(15):336–360

    Article  MATH  Google Scholar 

  42. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  Google Scholar 

  43. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87(6):541–565

    Article  MATH  Google Scholar 

  44. Ghorashi SS, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Methods Eng 89:1069–1101

    Article  MATH  MathSciNet  Google Scholar 

  45. Tambat A, Subbarayan G (2012) Isogeometric enriched field approximations. Comput Methods Appl Mech Eng 245–246:1–21

    Article  Google Scholar 

  46. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  47. Nguyen VP, Nguyen-Xuan H (2013) High-order B-splines based finite elements for delamination analysis of laminated composites. Compos Struct 102:261–275

    Article  Google Scholar 

  48. Nguyen VP, Kerfriden P, Bordas S (2013) Isogeometric cohesive elements for two and three dimensional composite delamination analysis. Compos Part B, 2013. http://arxiv.org/abs/1305.2738

  49. Takacs T, Jüttler B (2011) Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput Methods Appl Mech Eng 200(49–52):3568–3582

    Article  MATH  Google Scholar 

  50. Xu G, Mourrain B, Duvigneau R, Galligo A (2011) Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200(23–24):2021–2031

    Article  MATH  MathSciNet  Google Scholar 

  51. Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199(5–8):334–356

    Article  MATH  MathSciNet  Google Scholar 

  52. Schmidt R, Kiendl J, Bletzinger K-U, Wüchner R (2010) Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput Vis Sci 13(7):315–330

    Article  MATH  Google Scholar 

  53. Zhou X and Lu J (2005) Nurbs-based galerkin method and application to skeletal muscle modeling. In Proceedings of the 2005 ACM symposium on solid and physical modeling, SPM ’05. ACM, New York, pp 71–78

  54. Xu G, Mourrain B, Duvigneau R, Galligo A (2013) Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis. Comput Aided Des 45(4):812–821

    Article  MathSciNet  Google Scholar 

  55. Xu G, Mourrain B, Duvigneau R, Galligo A (2012) Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Comput Aided Des 45(2):395–404

    Article  MathSciNet  Google Scholar 

  56. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Gr 22:477–484

    Article  Google Scholar 

  57. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MATH  MathSciNet  Google Scholar 

  58. Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199(5–8):264–275

    Article  MATH  Google Scholar 

  59. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88(2):126–156

    Article  MATH  MathSciNet  Google Scholar 

  60. Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21):1892–1908

    Article  MATH  MathSciNet  Google Scholar 

  61. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47–48):3410–3424

    Article  MATH  Google Scholar 

  62. Rosolen A, Arroyo M (2013) Blending isogeometric analysis and local maximum entropy meshfree approximants. Comput Methods Appl Mech Eng 264:95–107

    Article  MathSciNet  Google Scholar 

  63. Nguyen VP, Kerfriden P, Claus S, Bordas SPA (2013) Nitsche’s method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling. Comput Methods Appl Mech Eng 2013. http://arxiv.org/abs/1308.2910

  64. Nitsche J (1971) Uber ein variationsprinzip zur losung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 36:9–15

    Article  MATH  MathSciNet  Google Scholar 

  65. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(4748):5537–5552

    Article  MATH  MathSciNet  Google Scholar 

  66. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78:229–252

    Article  MATH  MathSciNet  Google Scholar 

  67. Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decomposition with non-matching grids. ESAIM Math Modell Numer Anal 37:209–225

    Article  MATH  MathSciNet  Google Scholar 

  68. Hansbo A, Hansbo P, Larson MG (2003) A finite element method on composite grids based on Nitsche’s method. ESAIM Math Modell Numer Anal 37:495–514

    Article  MATH  MathSciNet  Google Scholar 

  69. Sanders J, Puso MA (2012) An embedded mesh method for treating overlapping finite element meshes. Int J Numer Methods Eng 91:289–305

    Article  MATH  MathSciNet  Google Scholar 

  70. Sanders JD, Laursen T, Puso MA (2011) A Nitsche embedded mesh method. Comput Mech 49(2):243–257

    Article  MathSciNet  Google Scholar 

  71. Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341

    Article  MATH  MathSciNet  Google Scholar 

  72. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(1214):1257–1275

    Article  MATH  Google Scholar 

  73. Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Accepted for publication, Int J Numer Methods Eng

  74. Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658

    Article  MATH  MathSciNet  Google Scholar 

  75. Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83(7):877–898

    MATH  MathSciNet  Google Scholar 

  76. Burman E, Fernández MA (2009) Stabilization of explicit coupling in fluidstructure interaction involving fluid incompressibility. Comput Methods Appl Mech Eng 198(5):766–784

    Article  MATH  Google Scholar 

  77. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26

    Article  MATH  MathSciNet  Google Scholar 

  78. Ruess M, Schillinger D, Bazilevs Y, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846

    Article  MathSciNet  Google Scholar 

  79. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41(3):407–420

    Article  MATH  Google Scholar 

  80. Sanders JD, Dolbow JE, Laursen TA (2009) On methods for stabilizing constraints over enriched interfaces in elasticity. Int J Numer Methods Eng 78:1009–1036

    Article  MATH  MathSciNet  Google Scholar 

  81. Griebel M, Schweitzer MA (2002) A particle-partition of unity method—Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542

    Google Scholar 

  82. Rhino. CAD modeling and design toolkit. www.rhino3d.com

  83. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    Google Scholar 

  84. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MATH  Google Scholar 

  85. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Google Scholar 

  86. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  87. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  88. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MATH  MathSciNet  Google Scholar 

  89. Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Methods Eng 87(15):15–47

    Article  MATH  MathSciNet  Google Scholar 

  90. Henderson A (2007) ParaView guide, a parallel visualization application. Kitware Inc

  91. Ugural AC, Fenster SK (1995) Advanced strength and applied elasticity, 3rd edn. Prentice-Hall, Englewood Cliffs

  92. Nguyen VP, Bordas SPA, Rabczuk T (2013) Isogeometric analysis: an overview and computer implementation aspects. Comput Aided Geom Des. http://arxiv.org/abs/1205.2129

  93. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199(5–8):301–313

    Article  MATH  MathSciNet  Google Scholar 

  94. Auricchio F, Calabro F, Hughes TJR, Reali A, Sangalli G (2012) A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 249–252:15–27

    Article  MathSciNet  Google Scholar 

  95. Fritz A, Hüeber S, Wohlmuth BI (2004) A comparison of mortar and Nitsche techniques for linear elasticity. CALCOLO 41(3):115–137

    Article  MATH  MathSciNet  Google Scholar 

  96. Sukumar N, Chopp DL, Moës N, Belytschko T (2000) Modelling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  Google Scholar 

  97. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83

    Article  MATH  Google Scholar 

  98. Tornincasa S, Bonisoli E, Kerfriden P, Brino M (2014) Investigation of crossing and veering phenomena in an isogeometric analysis framework. In Proceedings of IMAC XXXII, Orlando pp 3–6 Feb 2014

  99. Ruess M, Schillinger D, Bazilevs Y, Ozcan A, Rank E (2013) Weakly enforced boundary and coupling conditions in isogeometric analysis. In Proceedings of 12th US national congress on computational mechanics. Raleigh, North Carolina, July 22–25

  100. Noels L, Radovitzky R (2006) A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Methods Eng 68(1):64–97

    Article  MATH  MathSciNet  Google Scholar 

  101. Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable 3D fracture and fragmentation algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Comput Methods Appl Mech Eng 200(14):326–344

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Framework Programme 7 Initial Training Network Funding under grant number 289361 “Integrating Numerical Simulation and Geometric Design Technology”. Stéphane Bordas also thanks partial funding for his time provided by (1) the EPSRC under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method and (2) the European Research Council Starting Independent Research Grant (ERC Stg Grant Agreement No. 279578) entitled “Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery”. Marco Brino thanks Politecnico di Torino for the funding that supports his visit to iMAM at Cardiff University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane P. A. Bordas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V.P., Kerfriden, P., Brino, M. et al. Nitsche’s method for two and three dimensional NURBS patch coupling. Comput Mech 53, 1163–1182 (2014). https://doi.org/10.1007/s00466-013-0955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0955-3

Keywords

Navigation