Skip to main content
Log in

On the failure of the ‘Similar Piezoelectric Control’ in preventing loss of stability by nonconservative positional forces

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A control strategy for continuous, autonomous, linear mechanical systems, controlled via piezoelectric devices, and suffering Hopf bifurcations, triggered by positional nonconservative forces, is discussed. The strategy is based on the ‘principle of similarity’, proved in the literature to be successful in controlling externally excited systems. A continuous metamodel of Piezo-Electro-Mechanical system, loaded by position-dependent forces, is derived via the Extended Hamilton Principle. The similarity principle is introduced in the model, demanding for certain relations among mechanical and piezoelectric properties to be satisfied. A stability analysis is carried out via perturbation methods, also accounting for small deviations from similarity. It is shown that the similar control has always a detrimental effect in preventing the loss of stability of the mechanical systems and that this effect is robust under slight imperfections. As an example, a Generalized Beck beam is studied, internally and externally damped, under the simultaneous action of a follower and a dead load, for which the previous asymptotic results are corroborated by an exact analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies. US Patent 989958 (1911)

  2. Den Hartog J.: Mechanical Vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  3. Viguié, R.: Tuning methodology of nonlinear vibration absorbers coupled to nonlinear mechanical systems. Ph.D. thesis, University of Liege (2010)

  4. Yamaguchi H., Harnpornchai N.: Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations. Earthq. Eng. Struct. 22(1), 51–62 (1993)

    Article  Google Scholar 

  5. Abe M., Fujino Y.: Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq. Eng. Struct. 23(8), 813–835 (1994)

    Article  Google Scholar 

  6. Kareem A., Kline S.: Performance of multiple mass dampers under random loading. J. Struct. Eng. 121(2), 348–361 (1995)

    Article  Google Scholar 

  7. Rana R., Soong T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)

    Article  Google Scholar 

  8. Ubertini F.: Prevention of suspension bridge flutter using multiple tuned mass dampers. Wind Struct. 13(3), 235 (2010)

    Article  MathSciNet  Google Scholar 

  9. Casalotti A., Arena A., Lacarbonara W.: Mitigation of post-flutter oscillations in suspension bridges by hysteretic tuned mass dampers. Eng. Struct. 69, 62–71 (2014)

    Article  Google Scholar 

  10. Gendelman O., Gourdon E., Lamarque C.-H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4), 651–662 (2006)

    Article  Google Scholar 

  11. Gourdon E., Alexander N., Taylor C., Lamarque C.-H., Pernot S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3), 522–551 (2007)

    Article  Google Scholar 

  12. Vakakis A., Bergman L., Gendelman O., Gladwell G., Kerschen G., Lee Y., McFarland D.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer, Netherlands (2009)

    Google Scholar 

  13. Luongo A., Zulli D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  14. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed Multiple Scale/Harmonic Balance method. J. Vib. Control (2013). doi:10.1177/1077546313480542

  15. Viguié R., Kerschen G.: Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology. J. Sound Vib. 326(3), 780–793 (2009)

    Article  Google Scholar 

  16. Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of Den Hartog’s equal-peak method. Mech. Syst. Sign. Pr. 52–53, 17–28 (2015)

  17. Alessandroni S., dell’Isola F., Porfiri M.: A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39(20), 5295–5324 (2002)

    Article  MATH  Google Scholar 

  18. Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: Piezo-electromechanical (PEM) Kirchhoff–Love plates. Eur. J. Mech. A-Solid. 23, 689–702 (2004)

    Article  MATH  Google Scholar 

  19. Alessandroni S., Andreaus U., dell’Isola F., Porfiri M.: A passive electric controller for multimodal vibrations of thin plates. Comput. Struct. 83(15), 1236–1250 (2005)

    Article  Google Scholar 

  20. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    Article  MATH  Google Scholar 

  21. dell’Isola F., Porfiri M., Vidoli S.: Piezo-electromechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. C.R. Mécanique 331, 69–76 (2003)

    Article  MATH  Google Scholar 

  22. dell’Isola F., Santini E., Vigilante D.: Purely electrical damping of vibrations in arbitrary PEM plates: a mixed non-conforming FEM-Runge–Kutta time evolution analysis. Arch. Appl. Mech. 73(1–2), 26–48 (2003)

    MATH  Google Scholar 

  23. dell’Isola F., Maurini C., Porfiri M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13(2), 299 (2004)

    Article  Google Scholar 

  24. Maurini C., dell’Isola F., Del Vescovo D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Sign. Pr. 18(5), 1243–1271 (2004)

    Article  Google Scholar 

  25. Porfiri M., dell’Isola F., Frattale Mascioli F.: Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. Int. J. Circ. Theor. Appl. 32(4), 167–198 (2004)

    Article  MATH  Google Scholar 

  26. Rosi G., Pouget J., dell’Isola F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A-Solid. 29(5), 859–870 (2010)

    Article  MathSciNet  Google Scholar 

  27. Abdel-Rohman M.: Design of tuned mass dampers for suppression of galloping in tall prismatic structures. J. Sound Vib. 171(3), 289–299 (1994)

    Article  MATH  Google Scholar 

  28. Gattulli V., Di Fabio F., Luongo A.: One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass damper. J. Sound Vib. 262(2), 201–217 (2003)

    Article  Google Scholar 

  29. Gattulli V., Di Fabio F., Luongo A.: Simple and double hopf bifurcations in aeroelastic oscillators with tuned mass dampers. J. Franklin Inst. 338(2-3), 187–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pourzeynali S., Datta T.: Control of flutter of suspension bridge deck using TMD. Wind Struct. 5(5), 407–422 (2002)

    Article  Google Scholar 

  31. Gattulli V., Di Fabio F., Luongo A.: Nonlinear tuned mass damper for self-excited oscillations. Wind Struct. 7(4), 251–264 (2004)

    Article  Google Scholar 

  32. Abdel-Rohman M., Spencer B.: Control of wind-induced nonlinear oscillations in suspended cables. Nonlinear Dyn. 37(4), 341–355 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bolotin V.: Nonconservative Problems of the Theory of Elastic Stability. Macmillan, New York (1963)

    MATH  Google Scholar 

  34. Wang Q., Quek S.: Enhancing flutter and buckling capacity of column by piezoelectric layers. Int. J. Solids Struct. 39(16), 4167–4180 (2002)

    Article  MATH  Google Scholar 

  35. Wang Y., Wang Z., Zu L.: Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force. Arch. Appl. Mech. 83(4), 495–507 (2012)

    Article  Google Scholar 

  36. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. dell’Isola F., Henneke E., Porfiri M.: Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations. Int. J. Appl. Electromagn. 14(1), 417–424 (2001)

    Google Scholar 

  38. Andreaus, U., dell’Isola, F., Porfiri, M.: Multimodal vibration control by using piezoelectric transducers and passive circuits. In: Symposium on Electro-Magneto-Mechanics, pp. 307–317 (2003)

  39. Germain P.: The method of virtual powers in continuum mechanics. Part two Microstruct. J. Appl. Math. 25(3), 556–575 (1973)

    MathSciNet  MATH  Google Scholar 

  40. Luongo A., Zulli D.: Mathematical Models of Beams and Cables. Wiley, Hoboken (2013)

    Book  Google Scholar 

  41. Luongo, A., Zulli, D.: A non-linear one-dimensional model of cross-deformable tubular beam. Int. J. Nonlinear Mech. (2014). doi:10.1016/j.ijnonlinmec.2014.03.008

  42. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Therm. 1–43 (2013)

  43. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. 92(1), 52–71 (2011)

    Article  MathSciNet  Google Scholar 

  44. Carcaterra A., Akay A.: Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 121(4), 1971–1982 (2007)

    Article  Google Scholar 

  45. Crandall S.: Dynamics of Mechanical and Electromechanical Systems. Mc Graw Hill Book Company, New York (1968)

    Google Scholar 

  46. IEEE: IEEE Standard on Piezoelectricity—IEEE Std 176–1987. Institute of Electrical and Electronic Engineers (1987)

  47. Lanczos C.: Linear Differential Operators. Van Nostrand Reinhold, London (1961)

    MATH  Google Scholar 

  48. Luongo, A., D’Annibale, F.: Bifurcation analysis of damped visco-elastic planar beams under simultaneous gravitational and follower forces. Int. J. Mod. Phys. B 26(25), 1246015-1–1246015-6 (2012)

  49. Luongo, A., D’Annibale, F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Nonlinear Mech. 55, 128–139 (2013)

  50. Kirillov O., Seyranian A.: The effect of small internal and external damping on the stability of distributed non-conservative systems. J. Appl. Math. Mech. 69(4), 529–552 (2005)

    Article  MathSciNet  Google Scholar 

  51. Beck M.: Die knicklast des einseitig eingespannten, tangential gedrückten stabes. Z. Angew. Math. Phys. 3(3), 225–228 (1952)

    Article  MATH  Google Scholar 

  52. Seyranian A., Mailybaev A.: Multiparameter stability theory with mechanical applications, vol. 13. World Scientific, Singapore (2003)

    Google Scholar 

  53. Luongo, A., D’Annibale, F.: On the destabilizing effect of damping on discrete and continuous circulatory systems. J. Sound Vib. 333(24), 6723–6741 (2014)

  54. Luongo, A., D’Annibale, F.: A paradigmatic minimal system to explain the Ziegler paradox. Continuum Mech. Therm. (2014). doi:10.1007/s00161-014-0363-8

  55. D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica (2014). doi:10.1007/s11012-014-0037-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Luongo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Annibale, F., Rosi, G. & Luongo, A. On the failure of the ‘Similar Piezoelectric Control’ in preventing loss of stability by nonconservative positional forces. Z. Angew. Math. Phys. 66, 1949–1968 (2015). https://doi.org/10.1007/s00033-014-0477-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0477-7

Mathematics Subject Classification

Keywords

Navigation