Skip to main content

Advertisement

Log in

Climate and population origin shape pine tree height-diameter allometry

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Tree height-diameter allometry, the link between tree height and trunk diameter, reflects the evolutionary response of a particular species’ allocation patterns to above and belowground resources. As a result, it differs among and within species due to both local adaptation and phenotypic plasticity. These phenotypic variations in tree height-diameter allometry determine tree productivity, resistance and resilience to climate variation and, ultimately, the success of plant material used in restoration projects. We tested the effect of climate change and population origin on the phenotypic variation of tree allometry in four pine species at an early stage of development (ca. 11 years old) based upon data originated from multi-site provenance tests and planted along a wide climatic range in south-western Europe. For a representative sample of populations from each species, we used already-developed species-specific height-diameter allometric models to assess changes in allometry between present and future climatic conditions. We found that Pinus halepensis and Pinus pinaster were the most plastic species, while Pinus sylvestris and Pinus nigra showed negligible plastic responses. In addition, our models stressed that pine tree height-diameter allometry will change and phenotypic variation could increase, except in P. sylvestris, under future environmental conditions. For some of the species, this might allow the selection of phenotypes better suited to novel climatic conditions. These foreseeable changes in tree height-diameter allometry (among and within-species) could entail eco-evolutionary effects on the early forest plantation dynamics. Therefore, restoration and reforestation plans should consider these effects, as they may interfere with production and/or environmental goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1992) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson N (eds) Breakthroughs in statistics, vol I. Springer, London, pp 610–624

    Chapter  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R et al (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661. doi:10.1111/gcb.12181

    Article  PubMed  PubMed Central  Google Scholar 

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559. doi:10.1139/cjfr-27-10-1548

    Article  Google Scholar 

  • Alía R, Moro J, Denis JB (2001) Ensayos de procedencias de Pinus pinaster Ait. en el centro de España: resultados a la edad de 32 años. Investig Agrar Sist y Recur For 10:333–354

    Google Scholar 

  • Aranda I, Alía R, Ortega U et al (2009) Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet Genomes 6:169–178. doi:10.1007/s11295-009-0238-5

    Article  Google Scholar 

  • Bailey JK, Bangert RK, Schweitzer JA et al (2004) Fractal geometry is heritable in trees. Evolution 58:2100–2102

    Article  PubMed  Google Scholar 

  • Benito-Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778. doi:10.1111/j.1466-8238.2010.00646.x

    Article  Google Scholar 

  • Bullock SH (2000) Developmental patterns of tree dimensions in a neotropical deciduous forest. Biotropica 32:42–52

    Article  Google Scholar 

  • Bullock JM, Aronson J, Newton AC et al (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549

    Article  PubMed  Google Scholar 

  • Calev A, Zoref C, Tzukerman M et al (2016) High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur J For Res 135:551–563. doi:10.1007/s10342-016-0954-y

    Article  Google Scholar 

  • Chambel MR, Climent J, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97. doi:10.1051/forest

    Article  Google Scholar 

  • Costa P, Durel CE (1996) Time trends in genetic control over height and diameter in maritime pine. Can J For Res 26:1209–1217

    Article  Google Scholar 

  • Danjon F (1994) Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor Appl Genet 89:911–921

    CAS  PubMed  Google Scholar 

  • Dumroese RK, Williams MI, Stanturf JA, St Clair JB (2015) Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For 46:947–964. doi:10.1007/s11056-015-9504-6

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N et al (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771. doi:10.1093/jxb/erq443

    Article  CAS  PubMed  Google Scholar 

  • FAO (2006) State of the World’s Forests 2006. FAO, Rome

    Google Scholar 

  • García-Valdés R, Zavala MA, Araújo MB, Purves DW (2013) Chasing a moving target: projecting climate change-induced shifts in non-equilibrial tree species distributions. J Ecol 101:441–453. doi:10.1111/1365-2745.12049

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407. doi:10.1111/j.1365-2435.2007.01283.x

    Article  Google Scholar 

  • Gómez-Aparicio L, García-Valdés R, Ruiz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Chang Biol 17:2400–2414. doi:10.1111/j.1365-2486.2011.02421.x

    Article  Google Scholar 

  • Gonzalo-Jiménez J (2010) Diagnosis fitoclimática de la España peninsular hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Organismo Autónomo Parques Nacionales

  • Guyon JP, Kremer A (1982) Stabilité phénotypique de la croissance en hauteur et cinétique journalière de la pression de sève et de la transpiration chez le pin maritime (Pinus pinaster Ait.). Can J For Res 12:936–946

    Article  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hannrup B, Wilhelmsson L, Danell O (1998) Time trends for genetic parameters of wood density and growth traits in Pinus sylvestris L. Silvae Genet 47:214–219

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Ibáñez I, Zak DR, Burton AJ, Pregitzer KS (2016) Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage. Ecol Appl 26:913–925. doi:10.1890/15-0883

    Article  PubMed  Google Scholar 

  • IPCC (2014) Climate change 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland

  • Jacobs DF, Oliet JA, Aronson J et al (2015) Restoring forests: What constitutes success in the twenty-first century? New For 46:601–614. doi:10.1007/s11056-015-9513-5

    Article  Google Scholar 

  • Kao S-C, Ganguly AR (2011) Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J Geophys Res 116:D16119. doi:10.1029/2010JD015529

    Article  Google Scholar 

  • Kozłowski J (1992) Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends Ecol Evol 7:15–19. doi:10.1016/0169-5347(92)90192-E

    Article  PubMed  Google Scholar 

  • Leites LP, Robinson AP, Rehfeldt GE et al (2012) Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data. Ecol Appl 22:154–165

    Article  PubMed  Google Scholar 

  • Lenth RV (2016) Least-squares means: the R Package lsmeans. J Stat Softw 69(1):1–33

  • Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028. doi:10.1111/j.1466-8238.2011.00746.x

    Article  Google Scholar 

  • López-Serrano F, García-Morote A, Andrés-Abellán M et al (2005) Site and weather effects in allometries: a simple approach to climate change effect on pines. For Ecol Manage 215:251–270. doi:10.1016/j.foreco.2005.05.014

    Article  Google Scholar 

  • Madrigal-González J, Zavala MA (2014) Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem. Agric For Meteorol 192:18–26. doi:10.1016/j.agrformet.2014.02.011

    Article  Google Scholar 

  • Matyas C (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45–54. doi:10.1007/BF00022827

    Article  Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Menge DNL, Ballantyne F, Weitz JS (2011) Dynamics of nutrient uptake strategies: lessons from the tortoise and the hare. Theor Ecol 4:163–177. doi:10.1007/s12080-010-0110-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington

    Google Scholar 

  • Moles AT, Warton DI, Warman L et al (2009) Global patterns in plant height. J Ecol 97:923–932

    Article  Google Scholar 

  • Montero M (1997) Breve descripción del proceso repoblador en España (1940–1995). Legno Celul Cart 4:35–42

    Google Scholar 

  • Newton AC, Cantarello E (2015) Restoration of forest resilience: An achievable goal? New For 46:645–668. doi:10.1007/s11056-015-9489-1

    Article  Google Scholar 

  • Niklas KJ (1993) The scaling of plant height: a comparison among major plant clades and anatomical grades. Ann Bot 72:165–172

    Article  Google Scholar 

  • Niklas KJ (1994) Interspecific allometries of critical buckling height and actual plant height. Am J Bot 81:1275–1279

    Article  Google Scholar 

  • O’Neill GA, Nigh G (2011) Linking population genetics and tree height growth models to predict impacts of climate change on forest production. Glob Chang Biol 17:3208–3217. doi:10.1111/j.1365-2486.2011.02467.x

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme

  • Poorter H, Jagodzinski AM, Ruiz-Peinado R et al (2015) How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. doi:10.1111/nph.13571

    PubMed Central  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/

  • Rehfeldt GE, Worrall JJ, Marchetti SB, Crookston NL (2015) Adapting forest management to climate change using bioclimate models with topographic drivers. Forestry 88:528–539. doi:10.1093/forestry/cpv019

    Article  Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T et al (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279

    Article  PubMed  Google Scholar 

  • Ruiz-Benito P, Lines ER, Gómez-Aparicio L et al (2013) Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS ONE 8:e56843. doi:10.1371/journal.pone.0056843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242. doi:10.2307/1313077

    Article  Google Scholar 

  • Sánchez-Gómez D, Majada J, Alía R et al (2010) Intraspecific variation in growth and allocation patterns in seedlings. Ann For Sci 67:505

    Article  Google Scholar 

  • Sánchez-Salguero R, Linares JC, Camarero JJ et al (2015) Disentangling the effects of competition and climate on individual tree growth: a retrospective and dynamic approach in Scots pine. For Ecol Manage 358:12–25. doi:10.1016/j.foreco.2015.08.034

    Article  Google Scholar 

  • Santos-del-Blanco L, Zas R, Notivol E et al (2010) Variation of early reproductive allocation in multi-site genetic trials of Maritime pine and Aleppo pine. For Syst 19:381–392. doi:10.5424/fs/2010193-9109

    Google Scholar 

  • Santos-del-Blanco L, Bonser SP, Valladares F et al (2013) Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress. J Evol Biol 26:1912–1924. doi:10.1111/jeb.12187

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD (2008) Hidden reaction norms, cryptic genetic variation, and evolvability. Ann N Y Acad Sci 1133:187–203. doi:10.1196/annals.1438.010

    Article  PubMed  Google Scholar 

  • Sohn JA, Hartig F, Kohler M et al (2016) Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl. doi:10.1002/eap.1373

    PubMed  Google Scholar 

  • Soto A, Robledo-Arnuncio JJ, González-Martínez SC et al (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19:1396–1409. doi:10.1111/j.1365-294X.2010.04571.x

    Article  CAS  PubMed  Google Scholar 

  • Stoll P, Weiner J, Schmid B (1994) Growth variation in a naturally established population of Pinus sylvestris. Ecology 75:660–670

    Article  Google Scholar 

  • Taeger S, Zang C, Liesebach M et al (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manage 307:30–42

    Article  Google Scholar 

  • Thomas A, O’Hara R, Ligges U, Sturts S (2006) Making BUGS open. R News 6:12–17

    Google Scholar 

  • Thompson J (2005) Plant evolution in the Mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Valladares F, Balaguer L, Martinez-Ferri E et al (2002) Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467. doi:10.1046/j.1469-8137.2002.00525.x

    Article  Google Scholar 

  • Valladares F, Sánchez-Gómez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. doi:10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21(4):1162–1172. doi:10.1890/10-0647.1

  • Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC et al (2016) Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 6:7561–7573. doi:10.1002/ece3.2153

    Article  Google Scholar 

  • Wang T, Hamann A, Yanchuk AD et al (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Chang Biol 12:2404–2416. doi:10.1111/j.1365-2486.2006.01271.x

    Article  Google Scholar 

  • Weiner J, Stoll P, Jasentuliyana A (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am Nat 158(4):438–450. doi:10.1086/321988

  • Zavala MA, Espelta JM, Caspersen J, Retana J (2011) Interspecific differences in sapling performance with respect to light and aridity gradients in Mediterranean pine–oak forests: implications for species coexistence. Can J For Res 13:1–13. doi:10.1139/X11-050

    Google Scholar 

  • Zuccarini P, Farieri E, Vásquez R et al (2015) Effects of soil water temperature on root hydraulic resistance of six species of Iberian pines. Plant Biosyst 149:1–8. doi:10.1080/11263504.2014.983206

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation through Grants VULPINECLIM (MINECO, CGL2013-44553-R), REMEDINAL3-CM MAE-2719 and ADAPCON (CGL2011-30182-C02-01) and FENOPIN (AGL2012-40151-C03-02). NVP was supported by the fellowship ‘Formación Personal Investigador-Ministerio Competitividad e Industria FPI-MCI (BES-2009-025151)’. MBG was supported by a Marie Curie individual fellowship FPT7-PEOPLE-2012-IEF (AMECO). Data are part of the Spanish Network of Genetic Trials (GENFORED), and it is publicly available upon request through, www.genfored.es. The GENFORED team helped with the data used in this research. Special thanks to Noelia González-Muñoz, Carlos Pérez-Carmona and José Climent for their comments to earlier versions of the manuscript. The text has been revised by a professional scientific editor, P.C. Grant from Grant Language Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Vizcaíno-Palomar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 426 kb)

Appendix: Tree height-diameter allometry model

Appendix: Tree height-diameter allometry model

The tree height-diameter allometry model uses measurements of tree height (total height in cm, measured with a pole) and dbh [diameter at breast height (130 cm) in mm, measured with a caliper] collected at 11 ± 1 years of age. Competition can be an important factor to better understand tree allometry in trees (e.g. Weiner et al. 2001; Lines et al. 2012). However, in our case of study we selected a young developmental stage to minimize interpopulation competition effects in the experimental design. Moreover, a previous study using the same experimental setup did not find inter- or intra-population competition effects in any of the two variables measured (height and dbh) in 32-year-old P. pinaster individuals (Alía et al. 2001).

Based upon literature and exploratory analyses, we selected the subset of climatic variables most relevant at the testing sites to plant allometry for the four pine species studied. The selected variables were MMT (minimum temperature of coldest month,  °C), and AP (annual precipitation, mm). Both MMT and AP affect physiological and growth processes of plant species in the Mediterranean region (Thompson 2005), and have been consistently used in previous studies (e.g. Wang et al. 2006; O’Neill and Nigh 2011; Leites et al. 2012). Geographical variables of the populations’ site of origin, such as latitude, longitude and altitude, are surrogates for environmental conditions, e.g. the amount of heat energy received relative to the sun angle, temperature, humidity, and solar radiation; as they can usually reflect adaptation patterns to local conditions (see Alberto et al. 2013).

We built the best tree height-diameter allometry model by considering several variations of the basic model (see below Eq. 4), where a and c scaling parameters were constant, and they were estimated with different combinations of the variables associated with the growing sites and the origin of populations. The best final model structure was selected based on both biological relevance and the DIC criterion. There were some model structures that could not be fitted due to problems of model convergence.

The final model estimated tree height allometry as a combination of climate at the testing site (s) and geographic characteristics at the origin site of the population (p).

Considering an individual i, from population p growing in testing site s, its height-diameter allometry was modeled as:

Likelihood: heighti ~ log Normal (H i , σ 2) and the following process model:

$${\text{H}}_{\text{i}} = \ln \left( {a_{p(i),s(i)} } \right) + c_{p(i)} \times dbh_{i}$$
(4)

where the scaling coefficient \(\ln (a_{p(i),s(i)} )\) was estimated as:

$$\ln (a_{p(i),s(i)} ) = \alpha_{1p} + \alpha_{2p} \times MMT_{s} + \alpha_{3p} \times AP_{s}$$
(5)

and the scaling exponent, \(c_{p(i)}\), was estimated as:

$$c_{p(i)} = \beta_{1} + \beta_{2} \times LAT_{\text{p}} + \beta_{3} \times ALT_{\text{p}}$$
(6)

Tree height-diameter allometry, therefore, is the outcome result of population genetic effects on the basal height, parameterized in α 1p ; plus a genetic (population) clinal climatic pattern of the scaling exponent on latitude and altitude (β 2 × LAT p , β 3 × ALT p ), and of genetic differential plastic responses along temperature or and precipitation gradients of the testing site (α 2p  × MMT s , α 3p  × AP s ). Because all explanatory variables were standardized, parameter α1p was the allometric curve’s intercept at average climate conditions of across all growing sites and β 1 is the intercept of average diameter.

We used this model with its associated parameters’ means, variances and covariances to generate the necessary output data for our study, which aims to assess the effect of climate change on tree height-diameter allometry. Specifically, we generated total height at a fixed dbh (100 mm) of a specific population sample from each species within testing sites under present and future climatic conditions (see main text). We used OpenBUGs 1.4 to generate the output data (Thomas et al. 2006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vizcaíno-Palomar, N., Ibáñez, I., Benito-Garzón, M. et al. Climate and population origin shape pine tree height-diameter allometry. New Forests 48, 363–379 (2017). https://doi.org/10.1007/s11056-016-9562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-016-9562-4

Keywords

Navigation