Skip to main content

Advertisement

Log in

Phenotypic plasticity facilitates resistance to climate change in a highly variable environment

  • Global change ecology - Original research paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi:10.1111/j.1752-4571.2007.00013.x

    Article  Google Scholar 

  • Baumann H, Conover DO (2011) Adaptation to climate change: contrasting patterns of thermal-reaction-norm evolution in Pacific versus Atlantic silversides. Proc R Soc Lond B 278:2265–2273. doi:10.1098/rspb.2010.2479

    Article  Google Scholar 

  • Beckman JS, Mitton JB (1984) Peroxidase allozyme differentiation among successional stands of ponderosa pine. Am Midl Nat 112:43–49. doi:10.2307/2425455

    Article  Google Scholar 

  • Beniston M (in press) Impacts of climatic change on water and associated economic activities in the Swiss Alps. J Hydrol. doi: 10.1016/j.jhydrol.2010.06.046

  • Berg MP, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629. doi:10.1007/s10682-009-9347-8

    Article  Google Scholar 

  • Castro J (2006) Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Ann Bot 98:1233–1240. doi:10.1093/aob/mcl208

    Article  PubMed  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277. doi:10.1111/j.0022-0477.2004.00870.x

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202. doi:10.1007/s11258-005-6626-5

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA (2006) Restoring Quercus pyrenaica forests using pioneer shrubs as nurse plants. Appl Veg Sci 9:137–142. doi:10.1111/j.1654-109X.2006.tb00663.xco

    Article  Google Scholar 

  • Chambel MR, Climent J, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97. doi:10.1051/forest.2006092

    Article  Google Scholar 

  • Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, St. Clair JB (2011) Forest responses to climate change in the north western United States: ecophysiological foundations for adaptive management. For Ecol Manag 261:1121–1142. doi:10.1016/j.foreco.2010.12.040

    Article  Google Scholar 

  • Cobb NS, Mitton JB, Whitham TG (1994) Genetic variation associated with chronic water and nutrient stress in pinõn pine. Am J Bot 81:936–940. doi:10.2307/2445775

    Article  Google Scholar 

  • Cregg BM, Zhang JW (2001) Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For Ecol Manag 154:131–139. doi:10.1016/S0378-1127(00)00626-5

    Article  Google Scholar 

  • DeLucia EH, Maherali H, Carey EV (2000) Climate-driven changes in biomass allocation in pines. Glob Change Biol 6:587–593. doi:10.1046/j.1365-2486.2000.00338.x

    Article  Google Scholar 

  • Fournier N, Rigling A, Dobbertin M, Gugerli F (2006) Random amplified polymorphic DNA (RAPD) patterns show weak genetic differentiation between low- and high-elevation types of Scots pine (Pinus sylvestris L.) in dry continental valleys in the Alps. Ann For Sci 63:431–439. doi: 10.1051/forest:2006023

  • Gamst G, Meyers LS, Guarino AJ (2008) Analysis of variance designs: a conceptual and computational approach with SPSS and SAS. Cambridge University Press, New York

    Google Scholar 

  • Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Can J For Res 34:1845–1857. doi:10.1139/x04-059

    Article  Google Scholar 

  • Grulke NE (2010) Plasticity in physiological traits in conifers: implications for response to climate change in the western US. Environ Pollut 158:2032–2042. doi:10.1016/j.envpol.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160. doi:10.1016/j.tree.2009.10.001

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J, Rico L, Ramallo E, Estiarte M, Martínez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Change Biol 14:637–643. doi:10.1111/j.1365-2486.2007.01521.x

    Article  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change: range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. doi: 10.1016/j.foreco.2009.12.023

  • Labra M, Grassi F, Sgorbati S, Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora 201:468–476. doi: 10.1016/j.flora.2005.10.004

    Google Scholar 

  • Lenoir J, Gégout JC, Pierrat JC, Bontemps JD, Dhôte JF (2009) Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography 32:765–777. doi:10.1111/j.1600-0587.2009.05791.x

    Article  Google Scholar 

  • Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J Ecol 97:311–325. doi:10.1111/j.1365-2745.2008.01466.x

    Article  Google Scholar 

  • Martínez-Alonso C, Valladares F, Camarero JJ, Arias ML, Serrano M, Rodríguez JA (2007) The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a mediterranean Scots pine forest. For Ecol Manag 253:19–29. doi:10.1016/j.foreco.2007.06.043

    Article  Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302. doi:10.1111/j.1523-1739.2007.00676.x

    Article  PubMed  Google Scholar 

  • Mitton JB, Duran KL (2004) Genetic variation in pinõn pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264. doi:10.1111/j.1365-294X.2004.02122.x

    Article  PubMed  CAS  Google Scholar 

  • Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J For Res 129:625–633. doi:10.1007/s10342-010-0363-6

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692. doi:10.1016/j.tplants.2010.09.008

    Article  PubMed  CAS  Google Scholar 

  • Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170. doi: 10.1073/pnas.1003669107

    Google Scholar 

  • Pérez-Ramos IM, Marañón T (2009) Effects of waterlogging on seed germination of three Mediterranean oak species: ecological implications. Acta Oecol 35:422–428. doi:10.1016/j.actao.2009.01.007

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7:707–723. doi:10.1007/s11295-011-0368-4

    Article  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Barnhardt LK (1999) Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta. Can J For Res 29:1660–1668. doi:10.1139/cjfr-29-11-1660

    Article  Google Scholar 

  • Rehfeldt GE, Wykoff WR, Ying CC (2001) Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim Change 50:355–376. doi:10.1023/A:1010614216256

    Article  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Change Biol 8:912–929. doi:10.1046/j.1365-2486.2002.00516.x

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597. doi:10.1111/j.1461-0248.2008.01172.x

    Article  PubMed  CAS  Google Scholar 

  • Robson TM, Rodríguez-Calcerrada J, Sánchez-Gómez D, Aranda I (2009) Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Tree Physiol 29:249–259. doi:10.1093/treephys/tpn023

    Article  PubMed  Google Scholar 

  • Sahai H, Ageel MI (2000) The analysis of variance: fixed random and mixed models. Birkhäuser, Boston

    Google Scholar 

  • Sambatti JBM, Caylor KK (2007) When is breeding for drought tolerance optimal if drought is random? New Phytol 175:70–80. doi:10.1111/j.1469-8137.2007.02067.x

    Article  PubMed  Google Scholar 

  • Sánchez-Gómez D, Zavala MA, Valladares F (2008) Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species. Ann For Sci 65:311. doi:10.1051/forest:2008004

    Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi:10.1146/annurev.ecolsys.38.091206.095646

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336. doi:10.1038/nature02300

    Article  PubMed  Google Scholar 

  • Urbieta IR, Pérez-Ramos IM, Zavala MA, Marañón T, Kobe RK (2008) Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species. Can J For Res 38:2382–2393. doi:10.1139/x08-089

    Article  Google Scholar 

  • Valladares F, Sánchez-Gómez D (2006) Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biol 8:688–697

    Article  PubMed  CAS  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. doi:10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218. doi:10.1111/j.1365-2435.2010.01748.x

    Article  Google Scholar 

  • Zumbrunnen T, Bugmann H, Conedera M, Bürgi M (2009) Linking forest fire regimes and climate––a historical analysis in a dry inner alpine valley. Ecosystems 12:73–86. doi:10.1007/s10021-008-9207-3

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to E. Schnider, H. Bachofen, A. Burkart, K. Egger, S. Egli, R. Eppenberger, C. Hester, A. Joss, R. Maire, T. Reich and U. Wasem for field assistance and laboratory work. The rainshelter facility was designed and constructed by H. Herranhof and A. Moser, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland. Space and logistical support was provided by ARA Leuk und Umgebung. The study was supported by Grants 3100A0-118002 and 316000-121323 of the Swiss National Science Foundation.

Conflict of interest

The authors declare that they have no conflict of interest. The experiment described in this manuscript complies with the current laws of Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Moser.

Additional information

Communicated by Amy Austin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Kipfer, T., Wohlgemuth, T. et al. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169, 269–279 (2012). https://doi.org/10.1007/s00442-011-2191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2191-x

Keywords

Navigation