Skip to main content
Log in

Nanostructure, solvation dynamics, and nanotemplating of plasmonically active SERS substrate in reverse vesicles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Reverse vesicles (RVs) are the organic counterparts to vesicles and are spherical containers in oils consisting of an oily core surrounded by reverse bilayers with water layers present in between. We present here a facile route for forming stable RV from nontoxic surfactants and oil components. The RV formation is characterized by dynamic light scattering and further confirmed by transmission electron microscopic (TEM) techniques. The water channels present in between the bilayers are found to be a potential template for inorganic nanoparticles’ (NPs) synthesis. Both the UV–Vis absorption spectroscopy and the TEM study reveal successful formation of highly clustered silver NPs within the water layers of the RVs. X-ray powder diffraction analyzes the crystalline nature of the NPs. FTIR spectroscopy shows the signature of different kinds of water molecules in between the RV bilayers. The dynamical description of the templating water, dictating the controlled formation of the NPs in the RV, is well revealed in the picosecond-resolved solvation dynamics study of a hydrophilic fluorescence probe 2-(4-hydroxyphenyl)-5-[5-(4-methylpiperazine-1-yl)-benzimidazo-2-yl-benzimidazole] (H258). The rotational anisotropy study successfully describes geometrical restriction of the probe molecule in the RV. Notably, this study provides the first proof-of-concept data for the ability of the RV to be a template of synthesizing metal NPs. The as-prepared NP clusters are evaluated to be potential surface-enhanced Raman scattering substrate in solution using crystal violet as a model analyte. The present study offers a new RV, which is a prospective nontoxic nanotemplate and is believed to contribute potentially in the emerging NP-vesicle hybrid assembly-based plasmonic applications.

Graphical abstract

Nanotemplating of metal clusters for the efficient SERS detection in liquid phase is reported in a new nontoxic reverse vesicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bomans PH, Frederik PM, Kostarelos K (2008) Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2(3):408–418. doi:10.1021/nn700176a

    Article  CAS  Google Scholar 

  • Banerjee D, Pal SK (2006) Ultrafast charge transfer and solvation of DNA minor groove binder: Hoechst 33258 in restricted environments. Chem Phys Lett 432(1–3):257–262. doi:10.1016/j.cplett.2006.10.018

    Article  CAS  Google Scholar 

  • Banerjee D, Sinha SS, Pal SK (2007) Interplay between hydration and electrostatic attraction in ligand binding: direct observation of hydration barrier at reverse micellar interface. J Phys Chem B 111(51):14239–14243. doi:10.1021/jp076392e

    Article  CAS  Google Scholar 

  • Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16(16):3085–3090. doi:10.1021/cm049462s

    Article  CAS  Google Scholar 

  • Cañamares MV, Chenal C, Birke RL, Lombardi JR (2008) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112(51):20295–20300. doi:10.1021/jp807807j

    Article  Google Scholar 

  • Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT Reverse micelle systems. J Phys Chem B 105(12):2297–2302. doi:10.1021/jp002127g

    Article  CAS  Google Scholar 

  • Chen M, Ding W, Kong Y, Diao G (2008) Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host–guest binding interaction. Langmuir 24(7):3471–3478. doi:10.1021/la704020j

    Article  CAS  Google Scholar 

  • Cho WJ, Kim Y, Kim JK (2012) Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 6(1):249–255. doi:10.1021/nn2035236

    Article  CAS  Google Scholar 

  • Chu M, Zhuo S, Xu J, Sheng Q, Hou S, Wang R (2010) Liposome-coated quantum dots targeting the sentinel lymph node. J Nanopart Res 12(1):187–197. doi:10.1007/s11051-009-9593-2

    Article  CAS  Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973. doi:10.1126/science.1074972

    Article  CAS  Google Scholar 

  • Ethayaraja M, Dutta K, Bandyopadhyaya R (2006) Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation. J Phys Chem B 110(33):16471–16481. doi:10.1021/jp0623645

    Article  CAS  Google Scholar 

  • Ethayaraja M, Dutta K, Muthukumaran D, Bandyopadhyaya R (2007) Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation. Langmuir 23(6):3418–3423. doi:10.1021/la062896c

    Article  CAS  Google Scholar 

  • Fortuna S, Colard CAL, Troisi A, Bon SAF (2009) Packing patterns of silica nanoparticles on surfaces of armored polystyrene latex particles. Langmuir 25(21):12399–12403. doi:10.1021/la9010289

    Article  CAS  Google Scholar 

  • Gellini C, Muniz-Miranda M, Innocenti M, Carla F, Loglio F, Foresti ML, Salvi PR (2008) Nanopatterned Ag substrates for SERS spectroscopy. Phys Chem Chem Phys 10(31):4555–4558. doi:10.1039/B807663D

    Article  CAS  Google Scholar 

  • Guo X, Szoka FC (2003) Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc Chem Res 36(5):335–341. doi:10.1021/ar9703241

    Article  CAS  Google Scholar 

  • Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369(6480):471–473. doi:10.1038/369471a0

    Article  CAS  Google Scholar 

  • Kemp MM, Kumar A, Mousa S, Park T-J, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules 10(3):589–595. doi:10.1021/bm801266t

    Article  CAS  Google Scholar 

  • Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9(1):20–42. doi:10.1002/cphc.200700475

    Article  CAS  Google Scholar 

  • Kitchens CL, McLeod MC, Roberts CB (2003) Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems. J Phys Chem B 107(41):11331–11338. doi:10.1021/jp0354090

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  • Kunieda H, Nakamura K, Olsson U, Lindman B (1993) Spontaneous formation of reverse vesicles. J Phys Chem 97(37):9525–9531. doi:10.1021/j100139a043

    Article  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854. doi:10.1021/ja01167a001

    Article  CAS  Google Scholar 

  • Levinger NE (2002) Water in confinement. Science 298(5599):1722–1723. doi:10.1126/science.1079322

    Article  CAS  Google Scholar 

  • Li H, Hao J, Wu Z (2008) Phase behavior and properties of reverse vesicles in salt-free catanionic surfactant mixtures. J Phys Chem B 112(12):3705–3710. doi:10.1021/jp7112329

    Article  CAS  Google Scholar 

  • Li H, Xin X, Kalwarczyk T, Kalwarczyk E, Niton P, Hołyst R, Hao J (2010) Reverse vesicles from a salt-free catanionic surfactant system: a confocal fluorescence microscopy study. Langmuir 26(19):15210–15218. doi:10.1021/la1029068

    Article  CAS  Google Scholar 

  • Mann S, Hannington JP, Williams RJP (1986) Phospholipid vesicles as a model system for biomineralization. Nature 324(6097):565–567. doi:10.1038/324565a0

    Article  CAS  Google Scholar 

  • Mays H, Almgren M, Dedinaite A, Claesson PM (1999) Spontaneous formation of reverse vesicles with soybean phosphatidyl ethanolamine in mixture with triglyceride and some water. Langmuir 15(23):8072–8079. doi:10.1021/la990433j

    Article  CAS  Google Scholar 

  • McIntosh TJ, Magid AD, Simon SA (1989) Repulsive interactions between uncharged bilayers-hydration and fluctuation pressures for monoglycerides. Biophys J 55(5):897–904. doi:10.1016/S0006-3495(89)82888-7

    Article  CAS  Google Scholar 

  • Meldrum FC, Heywood BR, Mann S (1993) Influence of membrane composition on the intravesicular precipitation of nanophase gold particles. J Colloid Interface Sci 161(1):66–71. doi:10.1006/jcis.1993.1442

    Article  CAS  Google Scholar 

  • Mitra RK, Sinha SS, Verma PK, Pal SK (2008) Modulation of dynamics and reactivity of water in reverse micelles of mixed surfactants. J Phys Chem B 112(41):12946–12953. doi:10.1021/jp803585q

    Article  CAS  Google Scholar 

  • Muniz-Miranda M, Gellini C, Salvi PR, Innocenti M, Pagliai M, Schettino V (2011) Fabrication of nanostructured silver substrates for surface-enhanced Raman spectroscopy. J Nanopart Res 13(11):5863–5871. doi:10.1007/s11051-011-0493-x

    Article  CAS  Google Scholar 

  • Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25. doi:10.1038/nnano.2009.453

    Article  CAS  Google Scholar 

  • Nyirő-Kósa I, Rečnik A, Pósfai M (2012) Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages. J Nanopart Res 14(10):1–10. doi:10.1007/s11051-012-1150-8

    Google Scholar 

  • Piletic IR, Moilanen DE, Spry DB, Levinger NE, Fayer MD (2006) Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J Phys Chem A 110(15):4985–4999. doi:10.1021/jp061065c

    Article  CAS  Google Scholar 

  • Rangelov S, Almgren M, Edwards K, Tsvetanov C (2004) Formation of normal and reverse bilayer structures by self-assembly of nonionic block copolymers bearing lipid-mimetic units. J Phys Chem B 108(23):7542–7552. doi:10.1021/jp0304576

    Article  CAS  Google Scholar 

  • Rowe RC, Sheskey PJ, Owen SC (eds) (2006) Handbook of pharmaceutical excipients, 5th edn. Pharmaceutical Press and American Pharmacists Association, London

    Google Scholar 

  • Saha R, Verma PK, Mitra RK, Pal SK (2011) Structural and dynamical characterization of unilamellar AOT vesicles in aqueous solutions and their efficacy as potential drug delivery vehicle. Colloids Surf B 88(1):345–353. doi:10.1016/j.colsurfb.2011.07.012

    Article  CAS  Google Scholar 

  • Saha R, Rakshit S, Mitra RK, Pal SK (2012) Microstructure, morphology, and ultrafast dynamics of a novel edible microemulsion. Langmuir 28(22):8309–8317. doi:10.1021/la3012124

    Article  CAS  Google Scholar 

  • Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A, Dupuis V, Sandre O, Sb Lecommandoux (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140. doi:10.1021/nn102762f

    Article  CAS  Google Scholar 

  • Sawant RR, Torchilin VP (2010) Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 6(17):4026–4044. doi:10.1039/B923535N

    Article  CAS  Google Scholar 

  • Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001. doi:10.1073/pnas.97.3.996

    Article  CAS  Google Scholar 

  • Smetana AB, Wang JS, Boeckl J, Brown GJ, Wai CM (2007) Fine-tuning size of gold nanoparticles by cooling during reverse micelle synthesis. Langmuir 23(21):10429–10432. doi:10.1021/la701229q

    Article  CAS  Google Scholar 

  • Solla-Gullón J, Gómez E, Vallés E, Aldaz A, Feliu J (2010) Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. J Nanopart Res 12(4):1149–1159. doi:10.1007/s11051-009-9680-4

    Article  Google Scholar 

  • Song J, Cheng L, Liu A, Yin J, Kuang M, Duan H (2011) Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. J Am Chem Soc 133(28):10760–10763. doi:10.1021/ja204387w

    Article  CAS  Google Scholar 

  • Tardieu A, Luzzati V, Reman FC (1973) Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin–water phases. J Mol Biol 75(4):711–733. doi:10.1016/0022-2836(73)90303-3

    Article  CAS  Google Scholar 

  • Tricot YM, Fendler JH (1986) In situ generated colloidal semiconductor cadmium sulfide particles in dihexadecyl phosphate vesicles: quantum size and symmetry effects. J Phys Chem 90(15):3369–3374. doi:10.1021/j100406a013

    Article  CAS  Google Scholar 

  • Tung S-H, Lee H-Y, Raghavan SR (2008) A facile route for creating “reverse” vesicles: insights into “reverse” self-assembly in organic liquids. J Am Chem Soc 130(27):8813–8817. doi:10.1021/ja801895n

    Article  CAS  Google Scholar 

  • Ushio N, Solans C, Azemer NHK (1993) Formation and stability or reverse vesicles in a sucrose alkanoate system. J Jpn Oil Chem Soc (Yukagaku) 42(11):915–922. doi:10.5650/jos1956.42.915

    Article  CAS  Google Scholar 

  • Wang Y, Seebald JL, Szeto DP, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7):4039–4053. doi:10.1021/nn100351h

    Article  CAS  Google Scholar 

  • Zhang D-F, Zhang Q, Niu L-Y, Jiang L, Yin P-G, Guo L (2011) Self-assembly of gold nanoparticles into chain-like structures and their optical properties. J Nanopart Res 13(9):3923–3928. doi:10.1007/s11051-011-0312-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SR thanks the Council of Scientific and Industrial Research (CSIR) for a fellowship. We thank the Department of Science and Technology (DST), India, for the financial support (No. DST/TM/SERI/2k11/103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, R., Rakshit, S., Majumdar, D. et al. Nanostructure, solvation dynamics, and nanotemplating of plasmonically active SERS substrate in reverse vesicles. J Nanopart Res 15, 1576 (2013). https://doi.org/10.1007/s11051-013-1576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1576-7

Keywords

Navigation