Skip to main content
Log in

Self-assembly of gold nanoparticles into chain-like structures and their optical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Au nanoparticles with diameters of ca. 15 nm were synthesized according to the well-developed citrate reduction method. It was found that the nanoparticles tended to attach and fuse into each other to form chain-like structures with the removal of the stabilizing agents. UV–Vis absorption and HRTEM characterizations provided solid evidence for the fused features. On the basis of the HRTEM observations, we believed the decreased surface energy as well as the dipole–dipole interaction is responsible for the formation of the chain-like structures. SERS activity investigation indicated that the intensities of the b2-type bands have close relation with the concentration of the probing molecules, which further confirmed the chemical effect character of the b2-type scatterings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  • Bok HM, Shuford KL, Kim S, Kim SK, Park S (2008) Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods. Nano Lett 8:2265–2270

    Article  CAS  Google Scholar 

  • Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  • Cho EC, Au L, Zhang Q, Xia YN (2010) The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6:517–522

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  • Gole A, Sainkar SR, Sastry M (2000) Electrostatically controlled organization of carboxylic acid derivatized colloidal silver particles on amine-terminated self-assembled monolayers. Chem Mater 12:1234–1239

    Article  CAS  Google Scholar 

  • Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marqueze M, Xia YN (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  • Iqbal M, Chung YI, Tae G (2007) An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process. J Mater Chem 17:335–342

    Article  CAS  Google Scholar 

  • Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253

    Article  CAS  Google Scholar 

  • Jana N, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  • Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948

    Article  CAS  Google Scholar 

  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770

    Article  CAS  Google Scholar 

  • Kang YJ, Erickson KJ, Taton TA (2005) Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J Am Chem Soc 127:13800–13801

    Article  CAS  Google Scholar 

  • Kawamura G, Yang Y, Nogami M (2008) End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions. J Phys Chem C 112:10632–10636

    Article  CAS  Google Scholar 

  • Kim K, Lee HS (2005a) Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. J Phys Chem B 109:18234–18929

    Google Scholar 

  • Kim K, Yoon JK (2005b) Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J Phys Chem B 109:20731–20736

    Article  CAS  Google Scholar 

  • Liao JH, Zhang Y, Yu W, Xu LN, Ge CW, Liu JH, Gu N (2003) Linear aggregation of gold nanoparticles in ethanol. Colloid Surf A Physicochem Eng Aspect 223:177–183

    Article  CAS  Google Scholar 

  • Lin S, Li M, Dujardin E, Girard C, Mann S (2005) One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv Mater 17:2553–2559

    Article  CAS  Google Scholar 

  • Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 12:4430–4431

    Article  Google Scholar 

  • Maheshwari V, Kane J, Saraf RF (2008) Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles. Adv Mater 20:284–287

    Article  CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao JX, Gou LF, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–361

    Article  CAS  Google Scholar 

  • Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thuenemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Article  CAS  Google Scholar 

  • Pong BK, Elim HI, Chong JX, Li W, Trout BL, Lee JY (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of Gold(III) salt: formation of the au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287

    Article  CAS  Google Scholar 

  • Shipway AN, Lahav M, Gabai R, Willner I (2000) Investigations into the electrostatically induced aggregation of Au nanoparticles. Langmuir 16:8789–8795

    Article  CAS  Google Scholar 

  • Sudeep PK, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517

    Article  CAS  Google Scholar 

  • Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV (2004) Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 108:13066–13068

    Article  CAS  Google Scholar 

  • Turkevich J, Hillier J, Stevenson PC (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Wang YL, Zou XQ, Ren W, Wang WD, Wang EK (2007) Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J Phys Chem C 111:3259–3265

    Article  CAS  Google Scholar 

  • Yang XM, Skrabalak SE, Li ZY, Xia YN, Wang LV (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. Nano Lett 7:3798–3802

    Article  CAS  Google Scholar 

  • Zeng J, Huang JL, Lu W, Wang P, Wang B, Zhang SY, Hou JG (2007) Necklace-like noble-metal hollow nanoparticle chains: synthesis and tunable optical properties. Adv Mater 19:2172–2176

    Article  CAS  Google Scholar 

  • Zhang SZ, Kou XS, Yang Z, Shi QH, Stucky GD, Sun LD, Wang JF, Yan CH (2007) Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun 18:1816–1818

    Article  Google Scholar 

  • Zhang DF, Niu LY, Jiang L, Yin PG, Sun LD, Zhang H, Zhang R, Guo L, Yan CH (2008) Branched gold nanochains facilitated by polyvinylpyrrolidone and their SERS effects on p-aminothiophenol. J Phys Chem C 112:16011–16016

    Article  CAS  Google Scholar 

  • Zheng JW, Li XW, Gu R, Lu TH (2002) Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode. J Phys Chem B 106:1019–1023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support from NSFC (20803002 & 50725208) and Research Fund for the Doctoral Program of Higher Education of China (No 20070006016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DF., Zhang, Q., Niu, LY. et al. Self-assembly of gold nanoparticles into chain-like structures and their optical properties. J Nanopart Res 13, 3923–3928 (2011). https://doi.org/10.1007/s11051-011-0312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0312-4

Keywords

Navigation