Skip to main content
Log in

A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single crystalline rutile titanium oxide nanowires have been synthesized in bulk yield based on commercial metal titanium by a facile water-assisted chemical vapor deposition method. The morphology, crystallinity, and phase structure of the nanowires have been characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). This growth strategy is applicable for commercial metal titanium substrate with different spatial dimensions, such as powder, network mesh, and flat foil. The as-synthesized nanowires are found to be mainly composed of single crystalline rutile TiO2 nanowires in spiral shape with a small amount of hexagonal Ti2O nanowires with zigzag form. A growth mechanism has been proposed to explain the novel spiral and zigzag types of titanium oxide nanowires under moderate temperature (850 °C). This method promises an alternative way for industrialization of titanium oxide nanowires which may serve as a good candidate for various industrial applications such as optoelectronic, electronic, and electrochemical nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appell D (2002) Nanotechnology: wired for success. Nature 419:553–555

    Article  CAS  Google Scholar 

  • Badescu V, Mormirlan M (1996) Statistics of TiO2 crystal growth in air on a metallic surface heated at temperatures in the range of 900–1000°C. J Cryst Growth 169:309–316

    Article  CAS  Google Scholar 

  • Barsoum MW, Hoffman EN, Doherty RD, Gupta S, Zavaliangos A (2004) Driving force and mechanism for spontaneous metal whisker formation. Phys Rev Lett 93:206104(1)–206104(4)

  • Bonhote P, Gogniat E, Graztel M, Ashrit PV (1999) Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin film. Thin Solid Films 350:269–275

    Article  CAS  Google Scholar 

  • Chambers SA, Thevuthasan Farrow SRFC, Marks RF, Thiele JU, Folks L, Samant MG, Kellock AJ, Ruzychi N, Ederer DL, Diebold U (2001) Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Appl Phys Lett 79:3467–3469

    Article  CAS  Google Scholar 

  • Damiriu D, Bally AR, Ballif C, Homes P, Schmid PE, Sanjines R, Levy F, Parvulescu VI (2002) Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Appl Catal B 25:83–92

    Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  • Fang XS, Ye CH, Zhang LD, Xie T (2005) Luminescence and amplified stimulated emission in CdSe-ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides. Adv Mater 17:1661–1665

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Haul R, Dumbgen G (1965) Sauerstoff-selbstdiffusion in rutikristallen. J Phys Chem Solids 26:1–10

    Article  CAS  Google Scholar 

  • Huntington HB, Sullivan GA (1965) Interstitial diffusion mechanism in rutile. Phys Rev Lett 14:177–178

    Article  CAS  Google Scholar 

  • Johansson J, Karlsson L, Patrik C, Svensson T, Martensson T, Wacaser BA, Deppert K, Samuelson L, Seifert W (2006) Structural properties of <111> B-oriented III–V nanowires. Nat Mater 5:574–580

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  • Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electro Acta 52:2492–2497

    Article  CAS  Google Scholar 

  • Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Ringer SP, Song DY (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15:1310–1318

    Article  CAS  Google Scholar 

  • Lee JC, Park KS, Kim TG, Choi HJ, Sung YM (2006) Controlled growth of high-quality TiO2 nanowires on sapphire. Nanotechnology 17:4317–4321

    Article  CAS  Google Scholar 

  • Lei Y, Zhang L, Meng G, Li G, Zhang X, Liang C, Chen W, Wang S (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  CAS  Google Scholar 

  • Liu S, Huang K (2005) Straight forward fabrication of highly ordered TiO2 nanowire arrays in AAM aluminum substrate. Sol Energy Mater Sol C 85:125–131

    CAS  Google Scholar 

  • Liu SM, Gan LM, Lu LH, Zhang WD, Zeng HC (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397

    Article  CAS  Google Scholar 

  • Liu YZ, Zu XT, Lian J, Wang L, Huang XQ, Wang ZG, Wang LM, Ewing RC (2004) TEM observation of oxide scale formed on a Ti–Al–Zr alloy oxidized at 360°C in alkaline steam. Philos Mag Lett 84:705–712

    Article  CAS  Google Scholar 

  • Masumoto Y, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856

    Article  Google Scholar 

  • Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2:717–720

    Article  CAS  Google Scholar 

  • O’Neill SA, Parkin IP, Clark RJK, Mills A, Elliott N (2003) Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. J Mater Chem 13:56–60

    Article  Google Scholar 

  • O’Regan B, Grätzel MA (1991) Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353:737–740

    Article  Google Scholar 

  • Peng X, Chen A (2004) Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J Mater Chem 14:2542–2548

    Article  CAS  Google Scholar 

  • Peng X, Chen A (2005) Dense and high-hydrophobic rutile TiO2 nanorod arrays. Appl Phys A 80:473–476

    Article  CAS  Google Scholar 

  • Peng X, Chen A (2006) Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates. Adv Funct Mater 16:1355–1362

    Article  CAS  Google Scholar 

  • Pradhan SK, Reucroft PJ, Yang F, Dozier A (2003) Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth 256:83–88

    Article  CAS  Google Scholar 

  • Richel A, Johnson NP, McComb DW (2002) Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix. Appl Phys Lett 76:1816

    Article  Google Scholar 

  • Rothschild A, Levakov A, Shapira Y, Ashkenasy N, Komem Y (2005) Surface photovoltage spectroscopy study of reduced and oxidized TiO2 films. Surf Sci 532:456460

    Google Scholar 

  • Shannon RD (1964) Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J Appl Phys 35:3414–3416

    Article  CAS  Google Scholar 

  • Stergiopoulos T, Arabatzis LM, Katsaros G, Falaras P (2002) Binary polyethylene oxide/titania solid-sate redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2:1259–1261

    Article  CAS  Google Scholar 

  • Sung YM, Lee JK, Chae WS (2006) Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Cryst Growth Des 6:805–808

    Article  CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Dickey C, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  • Wang Q, Wen Z, Li J (2006) Solvent-controlled synthesis and electron chemical lithium storage of one dimensional TiO2 nanostructures. Inorg Chem 45:6944–6949

    Article  CAS  Google Scholar 

  • Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281:802–804

    Article  CAS  Google Scholar 

  • Wu JJ, Yu CC (2004) Aligned TiO2 nanorods and nanowalls. J Phys Chem B 108:3377–3379

    Article  CAS  Google Scholar 

  • Wu JM, Shih HC, Wu WT, Tseng YK, Chen IC (2005) Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281:384–390

    Article  CAS  Google Scholar 

  • Xiang B, Zhang Y, Wang Z, Luo XH, Zhu YW, Zhang HZ, Yu DP (2005) Field-emission properties of TiO2 nanowire arrays. J Phys D 38:1152–1155

    Article  CAS  Google Scholar 

  • Xiong C, Balkus KJ Jr (2005) Fabrication of TiO2 nanofibers from a mesoporous slica film. Chem Mater 17:5136–5140

    Article  CAS  Google Scholar 

  • Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by General Motors of Canada, the Natural Science and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) Program, Canadian Foundation for Innovation (CFI), Ontario Research Fund (ORF), Early Researcher Award (ERA), and the University of Western Ontario. We are in debt to David Tweddell, Fred Pearson and Ronald Smith for their kind help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhang, Y., Li, R. et al. A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition. J Nanopart Res 13, 385–391 (2011). https://doi.org/10.1007/s11051-010-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0041-0

Keywords

Navigation