Skip to main content

Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Abstract

Highly monodispersed nanoparticles produced by the hot injection method are discussed. The hot injection synthesized nanoparticles are remarkable materials with size-dependent properties leading to advanced developments in nanoscience and nanotechnology. The basic classical theory, nucleation and growth of the nanocrystals are discussed in the framework of hot injection method. Kinetics of the hot injection method has been explored with the help of Ostwald ripening process and crystal growth mechanism. A comparison of hot injection synthesis method with other methods has been explored. A detailed description of monodispersed nanocrystals has been given by taking various important examples such as Co, Ag, Au, CdSe, PbSe, PbS, SnS2, FeS2, CuInS2, Cu2ZnSnS4, Cu2NiSnS4 and ferrites, nanomaterials. Applications of the hot injection synthesized nanoparticles in different areas and their uses in device fabrication have also been specified. This chapter suggests the utility of the hot injection method in the formation of size and shape-dependent colloidal nanoparticles with desirable optical, electrical and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CQDs:

Carbon quantum dots

CTAB:

Cetyltrimethylammonium bromide

CZTS:

Copper zinc tin sulfide

DDT:

Dodecanethiol

DTR:

Diffusion transfer reversal

E°:

Reduction potential

E g :

Band gap

FTO:

Fluorine doped tin oxide

H c :

Coercivity

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

M r :

Retentivity

MSCs:

Magic size clusters

OA:

Oleic acid

OAM:

Oleylamine

ODE:

1-Octadecene

PVP:

Polyvinylpyrrolidone

QDs:

Quantum dots

SAM:

Self-assembly monolayer

SDS:

Sodium lauryl sulfate

SERS:

Surface enhanced Raman scattering

SLBL:

Successive layer by layer

TOP:

Trioctylphosphine

TOPO:

Trioctylphosphine oxide

TREG:

Triethylene glycol

References

  1. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  2. Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96:5546–5552

    Article  CAS  Google Scholar 

  3. Hamilton JF, Baetzold RC (1979) Catalysis by small metal clusters. Science 205:1213–1220

    Article  CAS  Google Scholar 

  4. Mansur HS, Grieser F, Marychurch MS, Biggs S, Urquhart RS, Furlong DN (1995) Photoelectrochemical properties of ‘Q-state’ CdS particles in arachidic acid Langmuir-Blodgett films. J Chem Soc Faraday Trans 91:665–672

    Article  Google Scholar 

  5. Hsu CW, Zhen B, Qiu W, Shapira O, DeLacy BG, Joannopoulos JD, Soljacic M (2014) Transparent displays enabled by resonant nanoparticle scattering. In: Lasers and electro-optics (CLEO), conference, pp 1–2. IEEE Xplore. ISBN: 978-1-55752-999-2

    Google Scholar 

  6. Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V (2009) Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Let 9:2532–2536

    Article  CAS  Google Scholar 

  7. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532

    Article  CAS  Google Scholar 

  8. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  9. Sear RP (2007) Nucleation: theory and applications to protein solutions and colloidal suspensions. J Phys Condens Matter 19:033101

    Google Scholar 

  10. Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  11. Abel KA, Boyer JC, Andrei CM, van Veggel FC (2011) Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J Phys Chem Lett 2:185–189

    Article  CAS  Google Scholar 

  12. Zhang F, Che R, Li X, Yao C, Yang J, Shen D, Hu P, Li W, Zhao D (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12:2852–2858

    Article  CAS  Google Scholar 

  13. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu Rev Phys Chem 41:477–496

    Article  CAS  Google Scholar 

  14. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560

    Article  CAS  Google Scholar 

  15. Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106:8096–8099

    Article  CAS  Google Scholar 

  16. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  17. Batlle X, Labarta AL (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D 35:R15–R42

    CAS  Google Scholar 

  18. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  19. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Article  CAS  Google Scholar 

  20. Kovalenko MV, Talapin DV, Loi MA, Cordella F, Hesser G, Bodnarchuk MI, Heiss W (2008) Quasi-seeded growth of ligand-tailored PbSe nanocrystals through cation-exchange-mediated nucleation. Angew Chem 47:3029–3033

    Article  CAS  Google Scholar 

  21. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem 46:4630–4660

    Article  CAS  Google Scholar 

  22. Thanh NT, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  CAS  Google Scholar 

  23. van Embden J, Chesman AS, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27:2246–2285

    Article  Google Scholar 

  24. Rempel JY, Bawendi MG, Jensen KF (2009) Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J Am Chem Soc 131:4479–4489

    Article  CAS  Google Scholar 

  25. Rinkel T, Nordmann J, Raj AN, Haase M (2014) Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale 6:14523–14530

    Article  CAS  Google Scholar 

  26. Klabunde KJ, Richards RM (2009) Nanoscale materials in chemistry. A. John Wiley & Sons, Inc. Publicayion, Hoboke, New Jersey; Sugimoto T (2001) Monodispersed particles. Elsevier, New York

    Google Scholar 

  27. Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  28. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Colloid Interface Sci 28:65–108

    Article  CAS  Google Scholar 

  29. Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot injection and heat up methods. Small 7:2685–2702

    Article  CAS  Google Scholar 

  30. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II−VI and III−V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc 124:5782–5790

    Article  CAS  Google Scholar 

  31. Ningthoujam RS (2012) Enhancement of luminescence by rare earth ions doping insemiconductor host (chapter 7). In: Rai SB, Dwivedi Y (eds) Nova Science Publishers Inc, USA, pp 145–182

    Google Scholar 

  32. Ningthoujam RS, Gautam A, Padma N (2017) Oleylamine as a reducing agent in syntheses of magic-size clusters and monodisperse quantum dots: optical and photoconductivity studies. Phys Chem Chem Phys 19:2294–2303

    Article  CAS  Google Scholar 

  33. Zhu H, Yang D, Yu G, Zhang H, Yao K (2006) A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology 17:2386

    Article  CAS  Google Scholar 

  34. Ningthoujam RS, Vatsa RK, Vinu A, Ariga K, Tyagi AK (2009) Room temperature exciton formation in SnO2 nanocrystals in SiO2: Eumatrix: quantum dot system, heat-treatment effect. J Nanosci Nanotechnol 9:2634–2638

    Article  CAS  Google Scholar 

  35. Ningthoujam RS, Sudarsan V, Kulshreshtha SK (2007) SnO2: Eu nanoparticles dispersed in silica: a low-temperature synthesis and photoluminescence study. J Lumin 127:747–756

    Article  CAS  Google Scholar 

  36. Ningthoujam RS, Sudarsan V, Godbole SV, Kienle L, Kulshreshtha SK, Tyagi AK (2007) SnO2:Eu3+ nanoparticles dispersed in TiO2 matrix: improved energy transfer between semiconductor host and Eu3+ ions for the low temperature synthesized samples. Appl Phys Lett 90:

    Article  Google Scholar 

  37. Ningthoujam RS (2010) Generation of exciton in two semiconductors interface: SnO2:Eu–Y2O3. Chem Phys Lett 497:208–212

    Article  CAS  Google Scholar 

  38. Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG (2002) On the absorption cross section of Cd senanocrystal quantum dots. J Phys Chem B 106:7619–7622

    Article  CAS  Google Scholar 

  39. Seo YS, Raj CJ, Kim DJ, Kim BC, Yu KH (2014) Effect of CdSe/ZnS quantum dots dispersion in silicone based polymeric fluids. Mater Lett 130:43–47

    Article  CAS  Google Scholar 

  40. Sayevich V, Gaponik N, Plötner M, Kruszynska M, Gemming T, Dzhagan VM et al (2015) Stable dispersion of iodide-capped PbSe quantum dots for high-performance low-temperature processed electronics and optoelectronics. Chem Mater 27:4328–4337

    Article  CAS  Google Scholar 

  41. Spirin MG, Brichkin SB, Razumov VF (2015) Luminescent properties of CdSe quantum dots in dispersion media with different polarity. High Energy Chem 49:426–432

    Article  CAS  Google Scholar 

  42. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65:703–718

    Article  CAS  Google Scholar 

  43. Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X (2014) Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515:96–99

    Article  CAS  Google Scholar 

  44. Qasim K, Lei W, Li Q (2013) Quantum dots for light emitting diodes. J Nanosci Nanotechnol 13:3173–3185

    Article  CAS  Google Scholar 

  45. Salaheldin AM, Walter J, Herre P, Levchuk I, Jabbari Y, Kolle JM, Brabec CJ, Peukert W, Segets D (2017) Automated synthesis of quantum dot nanocrystals by hot injection: mixing induced self-focusing. Chem Eng 320:232–243

    Article  CAS  Google Scholar 

  46. Zhang J, Gao J, Miller EM, Luther JM, Beard MC (2013) Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8:614–622

    Article  Google Scholar 

  47. Xuan TT, Liu JQ, Yu CY, Xie RJ, Li HL (2016) Facile synthesis of cadmium-free Zn-In-S: Ag/ZnS nanocrystals for bio-imaging. Sci Rep 6:24459

    Article  CAS  Google Scholar 

  48. Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337

    Article  CAS  Google Scholar 

  49. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine−trioctylphosphine oxide−trioctylphospine mixture. Nano Lett 1:207–211

    Article  CAS  Google Scholar 

  50. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341:2012–2018

    Article  CAS  Google Scholar 

  51. Tai CY, Wang YH, Liu HS (2008) A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J 54:445–452

    Article  CAS  Google Scholar 

  52. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  53. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    Article  CAS  Google Scholar 

  54. Komarneni S, Li D, Newalkar B, Katsuki H, Bhalla AS (2002) Microwave−polyol process for Pt and Ag nanoparticles. Langmuir 18:5959–5962

    Article  CAS  Google Scholar 

  55. Reddy DH, Lee SM (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201–202:68–93

    Article  Google Scholar 

  56. Jia Z, Yujun W, Yangcheng L, Jingyu M, Guangsheng L (2006) In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym 66:1552–1558

    Article  Google Scholar 

  57. Xu H, Liu X, Su G, Zhang B, Wang D (2012) Electrostatic repulsion-controlled formation of polydopamine–gold Janus particles. Langmuir 28:13060–13065

    Article  CAS  Google Scholar 

  58. Singhal P, Pulhani V, Musharaf Ali SKM, Ningthoujam RS (2019) Sorption of different metal ions on magnetic nanoparticles and their effect on nanoparticles settlement. Environ Nanotechnol Monit Manag 11(2019):

    Google Scholar 

  59. Luwang MN, Ningthoujam RS, Srivastava SK, Vatsa RK (2011) Preparation of white light emitting YVO4:Ln3+ and silica-coated YVO4:Ln3+(Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: energy transfer and site symmetry studies. J Mater Chem 21:5326–5337

    Article  CAS  Google Scholar 

  60. Luwang MN, Ningthoujam RS, Singh NS, Tewari R, Srivastava SK, Vatsa RK (2010) Surface chemistry of surfactant AOT-stabilized SnO2 nanoparticles and effect of temperature. J Colloid Interface Sci 349:27–33

    Article  CAS  Google Scholar 

  61. Timonen JV, Seppälä ET, Ikkala O, Ras RH (2011) From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation. Angew Chem 50:2080–2084

    Article  CAS  Google Scholar 

  62. Humphrey JJ, Sadasivan S, Plana D, Celorrio V, Tooze RA, Fermín DJ (2015) Surface activation of Pt nanoparticles synthesised by “hot injection” in the presence of oleylamine. Chem Eur J 21:12694–12701

    Article  CAS  Google Scholar 

  63. de Mello Donegá C, Liljeroth P, Vanmaekelbergh D (2005) Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1:1152–1162

    Article  Google Scholar 

  64. Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Shape control of PbSe nanocrystals using noble metal seed particles. Nano Lett 6:709–714

    Article  CAS  Google Scholar 

  65. Guzelian AA, Katari JB, Kadavanich AV, Banin U, Hamad K, Juban E, Heath JR (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem A 100:7212–7219

    Article  CAS  Google Scholar 

  66. Cao Y, Banin U (2000) Growth and properties of semiconductor core/shell nanocrystals with InAs cores. Am Chem Soc 122:9692–9702

    Article  CAS  Google Scholar 

  67. Lassenberger A, Grünewald TA, van Oostrum PDJ, Rennhofer H, Amenitsch H, Zirbs R, Lichtenegger HC, Reimhult E (2017) Monodisperse iron oxide nanoparticles by thermal decomposition: elucidating particle formation by second-resolved in situ small-angle x-ray scattering. Chem Mater 29:4511–4522

    Article  CAS  Google Scholar 

  68. Hikmet RAM, Talapin DV, Weller H (2003) Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J Appl Phys 93:3509–3514

    Article  CAS  Google Scholar 

  69. Kim H, Park B, Cho K, Kim JH, Lee JW, Kim DW, Kim S (2005) Transport of charge carriers in HgTe/CdTe core-shell nanoparticle film. Jpn J Appl Phys 44:5703

    Article  CAS  Google Scholar 

  70. Deng Z, Zhu H, Peng B, Chen H, Sun Y, Gang X, Jin P, Wang J (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632

    Article  CAS  Google Scholar 

  71. Tran QH, Nguyen VQ, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Google Scholar 

  72. Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, Lau GKK, Che C-M (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 13:253–262

    Article  CAS  Google Scholar 

  73. Wang J, Boelens HF, Thathagar MB, Rothenberg G (2004) In situ spectroscopic analysis of nanocluster formation. Chem Phys Chem 5:93–98

    Article  CAS  Google Scholar 

  74. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879

    Article  CAS  Google Scholar 

  75. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019

    Article  CAS  Google Scholar 

  76. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  77. Pacioni NL, Borsarelli CD, Valentina Rey, Alicia VV (2015) Silver nanoparticle applications. In: Alarcon EI, Griffith M, Udekwu KI (eds) Engineering materials. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-11262-6_2

  78. Barhoum A, Rehan M, Rahier H, Bechelany M, Van Assche G (2016) Seed-mediated hot-injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism. ACS Appl Mater Interfaces 8:10551–10561

    Article  CAS  Google Scholar 

  79. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  80. Bharti A, Bhardwaj R, Agrawal AK, Goyal N, Gautam S (2016) Monochromatic x-ray induced novel synthesis of Plasmonic nanostructure for photovoltaic application. Sci Rep 6

    Google Scholar 

  81. Noritomi H, Umezawa Y, Miyagawa S, Kato S (2011) Preparation of highly concentrated silver nanoparticles in reverse micelles of sucrose fatty acid esters through solid-liquid extraction method. ACES 1:299

    Article  CAS  Google Scholar 

  82. Chen J, Luo Y, Liang Y, Jiang J, Shen G, Yu R (2009) Surface-enhanced Raman scattering for immunoassay based on the biocatalytic production of silver nanoparticles. Anal Sci 25:347–352

    Article  CAS  Google Scholar 

  83. Benkovicova M, Vegso K, Siffalovic P, Jergel M, Luby S, Majkova E (2013) Preparation of gold nanoparticles for plasmonic applications. Thin Solid Films 543:138–141

    Article  CAS  Google Scholar 

  84. Ma WW, Yang Y, Chong CT, Eggeman A, Piramanayagam SN, Zhou TJ, Song T, Wang JP (2004) Synthesis and magnetic behavior of self-assembled Co nanorods and nanoballs. J Appl Phys 95:6801–6803

    Article  CAS  Google Scholar 

  85. Zacharaki E, Kalyva M, Fjellvåg H, Sjåstad AO (2016) Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles. Chem Cent J 10:10

    Article  Google Scholar 

  86. Xu J, Zhang W, Yang Z, Ding S, Zeng C, Chen L, Wang Q, Yang S (2009) Large-Scale synthesis of long crystalline Cu2−xSe nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing. Adv Funct Mater 19:1759–1766

    Article  CAS  Google Scholar 

  87. Yang CT, Hsiang HI, Tu JH (2016) Copper selenide crystallites synthesized using the hot-injection process. Adv Powder Technol 27:959–963

    Article  Google Scholar 

  88. Méndez-López A, Morales-Acevedo A, Acosta-Silva YJ, Ortega-López M (2016) Synthesis and characterization of colloidal CZTS nanocrystals by a hot-injection method. J Nanomater, Article ID 7486094, 7 pages

    Google Scholar 

  89. Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc 131:12554–12555

    Article  CAS  Google Scholar 

  90. Ahn JP, Kim MS, Kim SH, Lee BH, Kim DK, Park JS (2016) Hot-injection thermolysis of cobalt antimony nanoparticles with Co (II)-Oleate and Sb (III)-Oleate. J Korean Ceram 53:367–375

    Article  CAS  Google Scholar 

  91. Abdulwahab KO, Malik MA, O’Brien P, Timco GA (2014) A direct synthesis of water soluble monodisperse cobalt and manganese ferrite nanoparticles from iron based pivalate clusters by the hot injection thermolysis method. Mater Sci Semicond Process 27:303–308

    Article  CAS  Google Scholar 

  92. Williams JV, Kotov NA, Savage PE (2009) A rapid hot-injection method for the improved hydrothermal synthesis of CdSe nanoparticles. Ind Eng Chem Res 48:4316–4321

    Article  CAS  Google Scholar 

  93. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  94. Wuister SF, de Mello Donega C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–17397

    Article  CAS  Google Scholar 

  95. Kim JI, Kim J, Lee J, Jung DR, Kim H, Choi H, Lee S, Byun S, Kang S, Park B (2012) Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res Lett 7:482

    Article  Google Scholar 

  96. Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414

    Article  CAS  Google Scholar 

  97. Bakkers EPAM, Hens Z, Zunger A, Franceschetti A, Kouwenhoven LP, Gurevich L, Vanmaekelbergh D (2001) Shell-tunneling spectroscopy of the single-particle energy levels of insulating quantum dots. Nano Lett 1:551–556

    Article  CAS  Google Scholar 

  98. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe) ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  99. Deng ZX, Li L, Li Y (2003) Novel inorganic–organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorg Chem 42:2331–2341

    Article  CAS  Google Scholar 

  100. Valcheva E, Yordanov G, Yoshimura H, Ivanov T, Kirilov K (2014) Low temperature studies of the photoluminescence from colloidal CdSe nanocrystals prepared by the hot injection method in liquid paraffin. Colloids Surf A 461:158–166

    Article  CAS  Google Scholar 

  101. Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem Mater 16:3318–3322

    Article  CAS  Google Scholar 

  102. Sashchiuk A, Langof L, Chaim R, Lifshitz E (2002) Synthesis and characterization of PbSe and PbSe/PbS core–shell colloidal nanocrystals. J Cryst Growth 240:431–438

    Article  CAS  Google Scholar 

  103. Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett 3:857–862

    Article  CAS  Google Scholar 

  104. Wehrenberg BL, Wang C, Guyot-Sionnest P (2002) Interband and intraband optical studies of PbSe colloidal quantum dots. J Phys Chem B 106:10634–10640

    Article  CAS  Google Scholar 

  105. Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–56

    Article  CAS  Google Scholar 

  106. Du H, Chen C, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2:1321–1324

    Article  CAS  Google Scholar 

  107. Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 16:772–775

    Google Scholar 

  108. Bakueva L, Musikhin S, Hines MA, Chang T-WF, Tzolov M, Scholes GD, Sargent EH (2003) Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl Phys Lett 82:2895–2897

    Article  CAS  Google Scholar 

  109. Acharya KP, Hewa-Kasakarage NN, Alabi TR, Nemitz I, Khon E, Ullrich B, Anzenbacher P, Zamkov M (2010) Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications. J Phys Chem C 114:12496–12504

    Article  CAS  Google Scholar 

  110. Zhang Z, Yang J, Wen X, Yuan L, Shrestha S, Stride JA, Conibeer GJ, Patterson RJ, Huang S (2015) Effect of halide treatments on PbSe quantum dot thin films: stability, hot carrier lifetime, and application to photovoltaics. J Phys Chem C 119:24149–24155

    Article  CAS  Google Scholar 

  111. Yang J, Elim HI, Zhang Q, Lee JY, Ji W (2006) Rational synthesis, self-assembly, and optical properties of PbS−Au heterogeneous nanostructures via preferential deposition. J Am Chem Soc 128:11921–11926

    Article  CAS  Google Scholar 

  112. Nozik AJ (2002) Quantum dot solar cells. Physica E Low Dimens. Syst Nanostruct 14:115–120

    Article  CAS  Google Scholar 

  113. Zhang J, Crisp RW, Gao J, Kroupa DM, Beard MC, Luther JM (2015) Synthetic conditions for high-accuracy size control of PbS quantum dots. J Phys Chem Lett 6:1830–1833

    Article  CAS  Google Scholar 

  114. Lévy-Clément C, Neumann-Spallart M, Haram SK, Santhanam KSV (1997) Chemical bath deposition of cubic copper (I) selenide and its room temperature transformation to the orthorhombic phase. Thin Solid Films 302:12–16

    Article  Google Scholar 

  115. Lakshmikumar ST, Rastogi AC (1994) Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol Energy Mater Sol Cells 32:7–19

    Article  CAS  Google Scholar 

  116. Chen D, Chen W, Ma L, Ji G, Chang K, Lee JY (2014) Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Mater Today 17:184–193

    Article  CAS  Google Scholar 

  117. Panda SK, Antonakos A, Liarokapis E, Bhattacharya S, Chaudhuri S (2007) Optical properties of nanocrystalline SnS2 thin films. Mater Res Bull 42:576–583

    Article  CAS  Google Scholar 

  118. Huang PC, Wang HI, Brahma S, Wang SC, Huang JL (2017) Synthesis and characteristics of layered SnS2 nanostructures via hot injection method. J Cryst Growth 468:162–168

    Article  CAS  Google Scholar 

  119. Trinh TK, Pham VTH, Truong NTN, Kim CD, Park C (2017) Iron pyrite: phase and shape control by facile hot injection method. J Cryst Growth 461:53–59

    Article  CAS  Google Scholar 

  120. Vahidshad Y, Ghasemzadeh R, Irajizad A, Mirkazemi SM (2013) Synthesis and characterization of copper indium sulfide chalcopyrite structure with hot injection method. J Nanostruct 3:145–154

    Google Scholar 

  121. Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y (2008) Synthesis of Cu−In−S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621

    Article  CAS  Google Scholar 

  122. Song JM, Liu Y, Niu HL, Mao CJ, Cheng LJ, Zhang SY, Shen YH (2013) Hot-injection synthesis and characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. J. Alloys Compd 581:646–652

    Article  CAS  Google Scholar 

  123. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2014) Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Adv Energy Mater 4

    Google Scholar 

  124. Lu X, Zhuang Z, Peng Q, Li Y (2011) Wurtzite Cu 2 ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem Commun 47:3141–3143

    Article  CAS  Google Scholar 

  125. Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134:2910–2913

    Article  CAS  Google Scholar 

  126. Engberg S, Li Z, Lek JY, Lam YM, Schou J (2015) Synthesis of large CZTSe nanoparticles through a two-step hot-injection method. RSC Adv 5:96593–96600

    Article  CAS  Google Scholar 

  127. Kameyama T, Osaki T, Okazaki KI, Shibayama T, Kudo A, Kuwabata S, Torimoto T (2010) Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J Mater Chem 20:5319–5324

    Article  CAS  Google Scholar 

  128. Zhou M, Gong Y, Xu J, Fang G, Xu Q, Dong J (2013) Colloidal CZTS nanoparticles and films: preparation and characterization. J Alloy Compd 574:272–277

    Article  CAS  Google Scholar 

  129. Kamble A, Mokurala K, Gupta A, Mallick S, Bhargava P (2014) Synthesis of Cu2 NiSnS4 nanoparticles by hot injection method for photovoltaic applications. Mater Lett 137:440–443

    Article  CAS  Google Scholar 

  130. Bucherl CN, Oleson KR, Hillhouse HW (2013) Thin film solar cells from sintered nanocrystals. Curr Opin Chem Eng 2:168–177

    Article  Google Scholar 

  131. Liu Y, Liu F, Huang C, Lv X, Lai Y, Li J, Liu Y (2013) Hot-injection synthesis of Co0.85Se nanocrystals for photo-electrical application. Mater Lett 108:110–113

    Article  CAS  Google Scholar 

  132. Xu YF, Yan ML, Sellmyer DJ (2007) FePt nanocluster films for high-density magnetic recording. J Nanosci Nanotechnol 7:206–224

    Article  Google Scholar 

  133. Sokolovskiĭ GS, Vinokurov DA, Deryagin AG, Dudelev VV, Kuchinskiĭ VI, Losev SN, Lyutetskii AV, Pikhtin NA, Slipchenko SO, Sokolova ZN, Tarasov IS (2008) Switching between generation of two quantum states in quantum-well laser diodes. Tech Phys Lett 34:708–710

    Google Scholar 

  134. Lüdge K, Schöll E, Viktorov E, Erneux T (2011) Analytical approach to modulation properties of quantum dot lasers. J Appl Phys 109:103–112

    Article  Google Scholar 

  135. Saravanamoorthy SN, Peter AJ, Lee CW (2017) Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications. Chem Phys 483:1–6

    Article  Google Scholar 

  136. Shutts S, Elliott SN, Smowton PM, Krysa AB (2015) Exploring the wavelength range of InP/AlGaInP QDs and application to dual-state lasing. Semicond Sci Technol 30:

    Article  Google Scholar 

  137. Ezra YB, Lembrikov BI, Zarkovsky S (2017) Applications of quantum dot (QD) lasers in optical communications for datacenters. In: Transparent optical networks (ICTON), 2017 19th international conference. IEEE Xplore, pp 1–4

    Google Scholar 

  138. Martyniuk P, Rogalski A (2008) Quantum-dot infrared photodetectors: status and outlook. Prog Quant Electron 32:89–120

    Article  Google Scholar 

  139. Prabhakaran P, Kim WJ, Lee KS, Prasad PN (2012) Quantum dots (QDs) for photonic applications. Opt Mater Exprs 2:578–593

    Article  CAS  Google Scholar 

  140. Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215

    Article  CAS  Google Scholar 

  141. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  CAS  Google Scholar 

  142. Lee HJ, Jang KS, Jang S, Kim JW, Yang HM, Jeong YY, Kim JD (2010) Poly(amino acid)s micelle-mediated assembly of magnetite nanoparticles for ultra-sensitive long-term MR imaging of tumors. Chem Commun 46:3559–3561

    Article  CAS  Google Scholar 

  143. Lee SW, Bae S, Takemura Y, Shim IB, Kim TM, Kim J, Lee HJ, Zurn S, Kim CS (2007) Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application. J Magn Magn Mater 310:2868–2870

    Article  CAS  Google Scholar 

  144. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    Article  CAS  Google Scholar 

  145. Yao C, Zhang L, Wang J, He Y, Xin J, Wang S, Xu H, Zhang Z (2016) Gold nanoparticle mediated phototherapy for cancer. J Nanomater

    Google Scholar 

  146. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716

    Article  CAS  Google Scholar 

  147. McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, Hirst DG, Botchway SW, Currel FJ (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442

    Article  CAS  Google Scholar 

  148. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435

    Article  CAS  Google Scholar 

  149. Li J, Zhu JJ (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138:2506–2515

    Article  CAS  Google Scholar 

  150. Zhang JP, Chen P, Sun CH, Hu XJ (2004) Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl Catal A 266:49–54

    Google Scholar 

  151. Sharma S, Gajbhiye NS, Ningthoujam RS (2010) Synthesis and self-assembly of monodisperse CoxNi100−x (x = 50, 80) colloidal nanoparticles by homogenous nucleation. J Colloid Interface Sci 351:323–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Abhishek Kumar Soni acknowledges Science and Engineering Research Board (SERB), Government of India for providing the National Post-doctoral Fellowship (N-PDF file No. PDF/2016/003419).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, A.K., Joshi, R., Ningthoujam, R.S. (2021). Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1807-9_13

Download citation

Publish with us

Policies and ethics