Skip to main content
Log in

Dense and high-hydrophobic rutile TiO2 nanorod arrays

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Diebold: Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  2. P. Bonhote, E. Gogniat, M. Gräztel, P.V. Ashrit: Thin Solid Film 350, 269 (1999)

    Article  ADS  Google Scholar 

  3. J. Lausmaa, M. Ask, U. Rolander, B. Kasemo: Mater. Res. Soc. Sym. Proc. 110, 647 (1988)

    Article  Google Scholar 

  4. Y. Masumoto, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma: Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  5. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto: J. Phys. Chem. B 103, 2188 (1999)

    Article  Google Scholar 

  6. N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto: J. Phys. Chem. B 107, 1028 (2003)

    Article  Google Scholar 

  7. T.S. Yang, C.B. Shiu, M.S. Wong: Surf. Sci. 548, 75 (2004)

    Article  ADS  Google Scholar 

  8. K.-S. Lee, I.-S. Park: Scripta Materialia 48, 659 (2003)

    Article  Google Scholar 

  9. M.C. Marco de Lucas, F. Fabreguette, S. Collin, S. Bourgeois: Int. J. Inorg. Mater. 2, 255 (2000)

    Article  Google Scholar 

  10. D. Byun, Y. Jin, B. Kim, J.L. Lee, D. Park: J. Hazard Mater. B 73, 199 (2000)

    Article  Google Scholar 

  11. D. Damiriv, A.R. Bally, C. Ballif, P. Homes, P.E. Schmid, R. Sanjines, F. Levy, V.I. Parvulescu: Appl. Catal. B 25, 83 (2000)

    Article  Google Scholar 

  12. X.P. Wang, Y. Yu, X.F. Hu, L. Gao: Thin Solid Films 371, 148 (2000)

    Article  ADS  Google Scholar 

  13. K. Kato, A. Tsuzuki, H. Taoda, Y. Torrii, T. Kato, Y. Batsugn: J. Mater. Sci. 29, 5911 (1994)

    Article  ADS  Google Scholar 

  14. P. Hoyer: Langmuir 12, 1411 (1996)

    Article  Google Scholar 

  15. S M. Liu, L.M. Gan, L.H. Lu, W.D. Zhang, H.C. Zheng: Chem. Mater. 14, 1391 (2002)

    Article  Google Scholar 

  16. S.D. Burnside, V. Shklower, C. Barbe, P. Comte, F. Arendse, K. Brookes, M. Grätzel: Chem. Mater. 10, 2419 (1998)

    Article  Google Scholar 

  17. C.-Y. Wang, H. Groenzin, M.J. Shultz: J. Phys. Chem. B 108, 265 (2004)

    Article  Google Scholar 

  18. Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H.F. Xu: J. Am. Chem. Soc. 125, 12384 (2003)

    Article  Google Scholar 

  19. S. Yoo, S.A. Akbar, K.H. Sandhage: Adv. Mater. 16, 260 (2004)

    Article  Google Scholar 

  20. P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky: Nature 396, 152 (1998)

    Article  ADS  Google Scholar 

  21. X. Peng, A. Chen: J. Mater. Chem. 14, 2542 (2004)

    Article  Google Scholar 

  22. F. Czerwinski, J.A. Szpunar: Micron 29, 201 (1998)

    Article  Google Scholar 

  23. V. Badescu, M. Mormirlan: J. Crystal Growth 169, 309 (1996)

    Article  ADS  Google Scholar 

  24. F. Gracia, J.P. Holgado, L. Contreras, T. Girardeau, A.R. González-Elipe: Thin Solid Films 429, 84 (2003)

    Article  ADS  Google Scholar 

  25. J.Y. Shiu, C.W. Kuo, P.L. Chen, C.Y. Mou: Chem. Mater. 16, 561 (2004)

    Article  ADS  Google Scholar 

  26. Z. Yoshimito, A. Nakajima, T. Watanabe, K. Hasjimoto, Langmuir 18, 5818 (2002)

  27. R.N. Wenzel: Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  28. A.B.D. Cassie, S. Baxter: Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  29. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. Mckinley, K.K. Gleason: Nano Lett. 3, 1701 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chen.

Additional information

PACS

81.16.-Be; 81.20.ka; 82.4c.Cc; 68.37.Hk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Chen, A. Dense and high-hydrophobic rutile TiO2 nanorod arrays. Appl. Phys. A 80, 473–476 (2005). https://doi.org/10.1007/s00339-004-3052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3052-9

Keywords

Navigation