Skip to main content

Advertisement

Log in

Different effects of DEP1 on vascular bundle- and panicle-related traits under indica and japonica genetic backgrounds

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is a major food for more than half of the world’s population and serves as a model monocot plant. DEP1 (dense and erect panicle 1), corresponding to an erect-panicle architecture, may bring the third breakthrough in rice breeding after the introduction of the semi-dwarf trait and the application of heterosis in hybrid rice. The aim of this study was to determine the effects of DEP1 on yield components and vascular bundle-related traits under indica and japonica genetic backgrounds. We analyzed a series of recombinant inbred lines, which were derived from a cross between the japonica variety SN265 with an erect panicle and the indica variety R99 with a curved panicle. The results showed that effects of the DEP1/dep1 allele were much stronger than the effects of the indica/japonica genetic background on vascular bundle-related traits and yield components. As the frequency of indica alleles increased, the grain yield per plant and the harvest index significantly increased in lines with the dep1 allele. Among the indica-type lines, those with the dep1 allele showed superior values for almost all of the vascular bundle-related traits and yield components. Our results provide new insights into the use of a high-yield-related gene derived from japonica in the indica genetic background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cui K, Peng S, Xing Y, Yu S, Xu C, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106(4):649–658

    CAS  PubMed  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW (eds) Molecular techniques in taxonomy, vol 57. NATO ASI Series. Springer, Berlin, pp 283–293

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama T, Sasahara H, Fukuta Y (1999) Variation of vascular bundle system corresponds to indica, tropical-and temperate-japonica differentiation of Asian rice (Oryza sativa L.). Breed Sci 49(1):15–19

    Article  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42(4):646–655

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci 100(20):11765–11770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Lu B-R, Cai X, Xin J (2009) Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci 19(10):1241–1252

    Article  CAS  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell Online 21(4):1095–1108

    Article  CAS  Google Scholar 

  • Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Peng S, Khush GS, Virk P, Tang Q, Zou Y (2008) Progress in ideotype breeding to increase rice yield potential. Field Crops Res 108(1):32–38

    Article  Google Scholar 

  • Qiao Y, Piao R, Shi J, Lee S-I, Jiang W, Kim B-K, Lee J, Han L, Ma W, Koh H-J (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122(7):1439–1449

    Article  PubMed  Google Scholar 

  • Shen Y-J, Jiang H, Jin J-P, Zhang Z-B, Xi B, He Y-Y, Wang G, Wang C, Qian L, Li X (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135(3):1198–1205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630

    Article  CAS  PubMed  Google Scholar 

  • Suh H, Heu M (1978) The segregation mode of plant height in the cross of rice varieties. XI. Linkage analysis of the semi-dwarfness of the rice variety “Tongil”. Korean J Breed 10:1–6

    Google Scholar 

  • Sun J, Liu D, Wang J-Y, Ma D-R, Tang L, Gao H, Xu Z-J, Chen W-F (2012) The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor Appl Genet 125(6):1149–1157

    Article  PubMed  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46(6):652–656

    Article  CAS  PubMed  Google Scholar 

  • Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120(5):875–893

    Article  CAS  PubMed  Google Scholar 

  • Virmani S, Aquino R, Khush G (1982) Heterosis breeding in rice (Oryza sativa L.). Theor Appl Genet 63(4):373–380

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W (2006) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12(6):417–427

    Article  CAS  Google Scholar 

  • Wang J, Nakazaki T, Chen S, Chen W, Saito H, Tsukiyama T, Okumoto Y, Xu Z, Tanisaka T (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xu N, Xu H, Tang L, Liu J, Sun J, Wang J (2014) Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. japonica in early hybrid generations. Mol Breed 34(4):1933–1942

    Article  CAS  Google Scholar 

  • Yi X, Zhang Z, Zeng S, Tian C, Peng J, Li M, Lu Y, Meng Q, Gu M, Yan C (2011) Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). J Genet Genom 38(5):217–223

    Article  CAS  Google Scholar 

  • Yuan L (1998a) Hybrid rice breeding for super high yield. In: 21st century, vol 10

  • Yuan LP (1998b) Hybrid rice breeding in China. In: Advances in hybrid rice technology Philippines: International Rice Research Institute, pp 27–33

  • Zhang Z-H, Li P, Wang L-X, Tan C-J, Hu Z-L, Zhu Y-G, Zhu L-H (2002) Identification of quantitative trait loci (QTLs) for the characters of vascular bundles in peduncle related to indica–japonica differentiation in rice (Oryza sativa L.). Euphytica 128(2):279–284

    Article  CAS  Google Scholar 

  • Zhao X, Yang L, Zheng Y, Xu Z, Wu W (2009a) Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genom 36(7):435–442

    Article  CAS  Google Scholar 

  • Zhao X, Yang L, Zheng Y, Xu Z, Wu W (2009b) Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genom 36(7):435–442

    Article  CAS  Google Scholar 

  • Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183(1):315–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (No. 31430062 and 31371587) and a class general financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560211, Postdoctoral No. 142541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Quan Xu and Tiansheng Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

DEP1 allele in R99 and SN265. (a) Schematic representation of DEP1 allele in R99 and SN265. Light gray boxes and dark gray boxes represent UTR region and exons, respectively. Lines separating boxes represent introns. (b) Amino acid sequences of DEP1 alleles in R99 and SN265, gray boxes indicate same alignment. (PPTX 82 kb)

Figure S2

Linkage map of INDEL and SSILP subspecies-specific markers used in this study (PPTX 136 kb)

Figure S3

Relationship between V/R ratio and frequency of indica allele markers in curved- and erect-panicle lines (PPTX 59 kb)

Supplementary material 4 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Liu, T., Bi, W. et al. Different effects of DEP1 on vascular bundle- and panicle-related traits under indica and japonica genetic backgrounds. Mol Breeding 35, 173 (2015). https://doi.org/10.1007/s11032-015-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0364-8

Keywords

Navigation