Skip to main content
Log in

The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Hybridization between indica and japonica rice combined with utilization of ideal plant type has led to the development of high-yielding japonica rice in northern China. However, the contribution at the genomic level of intersubspecific hybridization to the increased yield of northern Chinese japonica rice is uncertain. In this study, we analyzed the genomic pedigree of descendants of hybridization between indica and japonica rice grown in northeastern China between 1963 and 2008. Simple sequence repeat markers indicated that since 1990 the genetic diversity among northern japonica cultivars was enriched. Genome-wide analysis with subspecies-specific indel and intron length polymorphism markers showed indica-allele frequencies were significantly increased in cultivars bred after 1990, and were significantly positively correlated with spikelet number per panicle and significantly negatively correlated with panicle number per plant. Among eight genes controlling agronomic traits, GN1a and GS3 were partially fixed in the genome of northern japonica cultivars. In contrast, Waxy and qSH1 were eliminated, whereas DEP1 and qSW5 were retained. Indica germplasm is an important contributor to the increased yield of northern japonica rice. Breeding for high yield and grain quality in combination is a complicated process and difficult to achieve when relying on only one or several functional genes, thus the selection expertise of the breeder remains critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Xu Z, Zhang L, Zhang W, Ma D (2007) Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin 40:869–874 (in Chinese)

    Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Sang T (2011) Inappropriate model rejects independent domestications of indica and japonica rice. Proc Natl Acad Sci USA 108:E755 (author reply E756)

  • Gu MH (2010) Discussion on the aspects of high-yielding breeding in rice. Acta Agronom Sin 36:1431–1439 (in Chinese)

    Google Scholar 

  • Huang C, Zhang G (2003) Development of position-specific microsatellite markers and molecular mapping of insect resistant genes in rice (Oryza sativa L.). Mol Plant Breed 1:572–574 (in Chinese)

    Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Ebana K, Izawa T (2008) Inference of the japonica rice domestication process from the distribution of six functional nucleotide polymorphisms of domestication-related genes in various landraces and modern cultivars. Plant Cell Physiol 49:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583

    Article  PubMed  CAS  Google Scholar 

  • Lu BR, Cai X, Jin X (2009) Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci 19:1241–1252

    Article  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (supplement). DNA Res 9:257–279

    Article  PubMed  CAS  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD (2006) Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Qi YW, Zhang DL, Zhang HL, Wang MX, Sun JL, Liao DQ, Wei XH, Qiu ZN, Tang SX, Cao YS (2006) 50-year variation trends for genetic diversity of Chinese cultivated rice. Chin Sci Bull 51:693–699 (in Chinese)

    Google Scholar 

  • Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Nakazaki T, Chen S, Chen W, Saito H, Tsukiyama T, Okumoto Y, Xu Z, Tanisaka T (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119:85–91

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W (2005) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12:417–427

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Xu ZJ, Chen WF, Zhang WZ, Zhou SQ, Liu LX, Zhang LB, Yang SR (2004) New plan type breeding for super-high yielding northern Japonica rice. Sci Agric Sin 37:1407–1413 (in Chinese)

    Google Scholar 

  • Yan CJ, Yan S, Yang YC, Zeng XH, Fang YW, Zeng SY, Tian CY, Sun YW, Tang SZ, Gu MH (2009) Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica 169:215–226

    Article  CAS  Google Scholar 

  • Yang SR, Zhang LB, Wang GM (1984) The theory and method of ideal plant morphology in rice breeding. Sci Agric Sin 3:1–3

    Google Scholar 

  • Yeh F (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Zhao X, Yang L, Zheng Y, Xu Z, Wu W (2009) Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genomics 36:435–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30971845) and Key Technologies R&D Program (Breeding of New Varieties of Super Rice). We are grateful to Hong-Yu Li and Hai-Ze Wang of Heilongjiang Bayi Agricultural University, China, for their donation of rice cultivars. We thank the editor and anonymous reviewers for providing comments that much greatly improved the manuscript. We thank Dr Jin-Quan Li of the Max Plank Institute for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Jin Xu or Wen-Fu Chen.

Additional information

Communicated by Y. Xu.

J. Sun and D. Liu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Liu, D., Wang, JY. et al. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China. Theor Appl Genet 125, 1149–1157 (2012). https://doi.org/10.1007/s00122-012-1901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1901-z

Keywords

Navigation