Skip to main content
Log in

Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) blast caused by fungus Magnaporthe oryzae is one of the most devastating diseases throughout the world. In the current study, a rice blast resistance gene, designated as Pike, was identified from an indica breeding line Xiangzao143 conferring a durable resistance to rice blast. A map-based cloning strategy was then employed to locate Pike to a 306-kb genomic interval in proximity of the telomeric region of the long arm of chromosome 11. Candidate gene analysis and transgenic complementation test demonstrated that two Xiangzao143-derived adjacent CC–NBS–LRR genes (Pike-1 and Pike-2) at the previously identified Pik locus were required for the Pike-mediated resistance. As compared to the previously identified Pik alleles, the putative Pike-1 peptide was found to be unique in three highly polymorphic sites, two amino acid residue sites (D153 and D229) in the CC domain and one site (L442-W443-P465) in the NBS domain. In addition, against a set of 215 M. oryzae isolates collected from diverse rice cropping areas of China, the Pike carrier Xiangzao143 showed a unique resistance spectrum and a high resistance frequency of 86.1 %. These results thus declared Pike as a novel allele of the Pik locus. Two SNPs G1328C and A3017T in Pike DNA sequence were identified and based on the SNPs, two Pike-specific dCAPS markers d-G1328C and d-A3017T were developed and have been used to effectively distinguish Pike from all of the previously identified Pik alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikawa I (2012) Regions outside the leucine-rich repeat domain determine the distinct resistance specificities of the rice blast resistance genes Pik and Pik-m. Mol Breed 30(3):1531–1535

    Article  CAS  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180(4):2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12(12):1871–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonman JM, Dios TIVd, Khin MM (1986) Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis 70:767–769

    Article  Google Scholar 

  • Bookout AL, Mangelsdorf DJ (2003) Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1:e012

    PubMed Central  PubMed  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell MA, Chen D, Ronald PC (2004) Development of co-dominant amplified polymorphic sequence markers in rice that flank the Magnaporthe grisea resistance gene Pi7(t) in recombinant inbred line 29. Phytopathology 94(3):302–307

    Article  CAS  PubMed  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Jean-BenoitMorel Fournier E, Tharreau D, Terauchi R, Kroja T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen DH, dela Vina M, Inukai T, Mackill DJ, Ronald PC, Nelson RJ (1999) Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Crop species. Theor Appl Genet 98(6–7):1046–1053

    Article  CAS  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46(5):794–804

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wu J, Li X, Wang X, Liu X, Jantasuriyarat C, Kudrna D, Yu Y, Wing RA, Han B, Zhou B, Wang GL (2010) Genomic structure and evolution of the Pi2/9 locus in wild rice species. Theor Appl Genet 121(2):295–309

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113(4):705–713

    Article  CAS  PubMed  Google Scholar 

  • Fjellstrom R, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44(5):1790–1798

    Article  CAS  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Yamamoto S-I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Thi Thanh Nguyen T, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep. doi:10.1038/srep04550

    Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100(7):1121–1128

    Article  CAS  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125(5):1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19(15):4004–4014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907

    CAS  PubMed  Google Scholar 

  • Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide–binding-leucine-rich repeat genes. Genetics 181(4):1627–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet 20(3):116–122

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang F, Liu Z, Zhu X, Li X, Huang H, Liao Y, Zhu M, Fu C, Chen J (2012) Improvement of rice blast resistance in CMS line Rongfeng A by pyramiding Pi-1 and Pi-2 with molecular marker techniques. Mol Plant Breed 10(5):575–582 (in Chinese)

    CAS  Google Scholar 

  • Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL (2013) Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6(3):605–620

    Article  CAS  PubMed  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22(3):356–358

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14(3):387–392

    Article  CAS  PubMed  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS–LRR protein genes. Plant J 66(3):467–479

    Article  CAS  PubMed  Google Scholar 

  • Pink DAC (2002) Strategies using genes for non-durable disease resistance. Euphytica 124(2):227–236

    Article  CAS  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172(3):1901–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Rybka K, Miyamoto M, Ando I, Saito A, Kawasaki A (1997) High resolution mapping of the indica-derived rice blast resistance genes II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol Plant-Microbe Interact 10:517–524

    Article  CAS  Google Scholar 

  • Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep 25(8):836–847

    Article  CAS  PubMed  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Yang Z, Wang S, Zhang Q (2003) Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet 106(4):683–687

    CAS  PubMed  Google Scholar 

  • Sun XL, Cao YL, Yang ZF, Xu CG, Li XH, Wang SP, Zhang QF (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37(4):517–527

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19(1):55–64

    Article  PubMed  Google Scholar 

  • Wang CT, Tan MP, Xu X, Wen GS, Zhang DP, Lin XH (2003) Localizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome. Phytopathology 93(10):1258–1262

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yu Y, Wu Y, Wang J, Xiao F, Gong H, Zhang Q (2006) Breeding and application of an quality early indica resistant cultivar Xiangzao143. China Rice (5):24–25 (in Chinese)

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC–NBS–LRR genes. Theor Appl Genet 122(5):1017–1028

    Article  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189(1):321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE 9(6):e98067

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS–LRR genes. Mol Genet Genomics 271(4):402–415

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19(11):1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124(7):1295–1304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Cailin Lei of the Chinese Academy of Agricultural Sciences and Prof. Weiren Wu of Fujian Agriculture and Forestry University for providing rice blast R gene monogenic lines and Dr. Dazhao Yu of the Hubei Academy of Agricultural Sciences of China for providing some of the M. oryzae isolates inoculated in the present study. This work was financed by the National Natural Science Foundation of China (No 0.30771153) and the Science and Technology Project of Hubei Province in China (No. 2010CBB02401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Peng, P., Tian, J. et al. Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding 35, 117 (2015). https://doi.org/10.1007/s11032-015-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0305-6

Keywords

Navigation