Skip to main content
Log in

The effect of polymer additives on the critical thicknesses of mullite thin films obtained from the monophasic sol–gel precursors

  • Original Paper: Fundamentals of sol-gel and hybrid materials processing
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The critical thickness, a maximum thickness of a non-repeating film deposition, above which cracking occurs, is an important characteristic of sol–gel-coating process. In this paper, we used mullite films prepared from the monophasic sol–gel precursors as an example system to study the effects of polymer additives on the coating’s critical thickness. The mullite and mullite–polymer hybrid gels demonstrated monophasic characteristics, enabling low-temperature processing of nanocrystalline, phase-pure mullite films at 1000 °C. The cracking in the films was only observed at the temperatures below 400 °C. Increasing film thickness caused a decrease in the cracking onset temperature. Adding polymers, such as PVP, PEO, and PVA, in the precursor increased the critical thickness. We demonstrated that the reasons of the crack prevention caused by the polymer additives were because they not only slowed down the sol–gel polycondensation process, but also relaxed the stresses during heat treatment. The polymer decomposing in a wider temperature range had a greater critical thickness. The polymer additives also showed optimal concentrations in improving the critical thicknesses. Dense, crack-free, and phase-pure mullite films with thickness up to 450 nm were achieved after firing at 1000 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brinker CJ, Scherer GW (2013) Sol–gel science: the physics and chemistry of sol–gel processing. Academic press, Cambridge

    Google Scholar 

  2. Roy J, Das S, Maitra S (2014) Sol gel–processed mullite coating—a review. Int J Appl Ceram Technol 12:E71–E77

    Article  Google Scholar 

  3. Chen Z, Zhang Z, Tsai CC, Kornev K, Luzinov I, Fang M, Peng F (2015) Electrospun mullite fibers from the sol–gel precursor. J Sol–Gel Sci Technol 74(1):208–219

    Article  Google Scholar 

  4. Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T (2003) Stress and cracks in gel-derived ceramic coatings and thick film formation. J Sol–Gel Sci Technol 26(1–3):681–686

    Article  Google Scholar 

  5. Atkinson A, Guppy RM (1991) Mechanical stability of sol–gel films. J Mater Sci 26(14):3869–3873

    Article  Google Scholar 

  6. Kozuka H (2006) Stress evolution on gel-to-ceramic thin film conversion. J Sol–Gel Sci Technol 40(2–3):287–297

    Article  Google Scholar 

  7. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147:424–436

    Article  Google Scholar 

  8. Chen SY, Chen IW (1995) Cracking during pyrolysis of oxide thin films-phenomenology, mechanisms, and mechanics. J Am Ceram Soc 78(11):2929–2939

    Article  Google Scholar 

  9. Kozuka H, Takenaka S (2002) Single-step deposition of gel-derived lead zirconate titanate films: critical thickness and gel film to ceramic film conversion. J Am Ceram Soc 85(11):2696–2702

    Article  Google Scholar 

  10. Jing C, Zhao X, Zhang Y (2007) Sol–gel fabrication of compact, crack-free alumina film. Mater Res Bull 42(4):600–608

    Article  Google Scholar 

  11. Schmidt H, Rinn G, Naβ R, Sporn D (1988) Film preparation by inorganic-organic sol–gel synthesis. In: MRS proceedings, vol 121, pp 743–754. doi:10.1557/PROC-121-743

  12. Kozuka H, Kajimura M (2000) Single-step dip coating of crack-free BaTiO3 films> 1 μm thick: effect of poly (vinylpyrrolidone) on critical thickness. J Am Ceram Soc 83(5):1056–1062

    Article  Google Scholar 

  13. Kozuka H, Takenaka S (2002) Single-step deposition of gel-derived lead zirconate titanate films: critical thickness and gel film to ceramic film conversion. J Am Ceram Soc 85(11):2696–2702

    Article  Google Scholar 

  14. Du ZH, Ma J (2006) The effect of PVP on the critical thickness and properties of PLZT ceramic films. J Electroceram 16(4):565–569

    Article  Google Scholar 

  15. Kozuka H, Kajimura M, Hirano T, Katayama K (2000) Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent. J Sol–Gel Sci Technol 19(1–3):205–209

    Article  Google Scholar 

  16. Kajihara K, Nakanishi K, Tanaka K, Hirao K, Soga N (1998) Preparation of macroporous titania films by a sol–gel dip-coating method from the system containing poly (ethylene glycol). J Am Ceram Soc 81(10):2670–2676

    Article  Google Scholar 

  17. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74(10):2343–2358

    Article  Google Scholar 

  18. Kriven WM, Palko JW, Sinogeikin S, Bass JD, Sayir A, Brunauer G et al (1999) High temperature single crystal properties of mullite. J Eur Ceram Soc 19(13):2529–2541

    Article  Google Scholar 

  19. Dokko PC, Pask JA, Mazdiyasni KS (1977) High-temperature mechanical properties of mullite under compression. J Am Ceram Soc 60(3–4):150–155

    Article  Google Scholar 

  20. Kanzaki S, Tabata H, Kumazawa T, Ohta S (1985) Sintering and mechanical properties of stoichiometric mullite. J Am Ceram Soc 68(1):c-6–c-7

    Article  Google Scholar 

  21. Lee KN (2000) Current status of environmental barrier coatings for Si-based ceramics. Surf Coat Technol 133:1–7

    Google Scholar 

  22. Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42

    Article  Google Scholar 

  23. Chen YY, Wei WCJ (2001) Formation of mullite thin film via a sol–gel process with polyvinylpyrrolidone additive. J Eur Ceram Soc 21(14):2535–2540

    Article  Google Scholar 

  24. Wang N, Yang XZ, Li JB, Lin H, Chi B (2007) Fabrication and characterization of porous mullite coating on porous silicon carbide support. In: Key engineering materials, vol 280–283, pp 1301–1304. doi:10.4028/www.scientific.net/KEM.280-283.1301

  25. Ansar SA, Bhattacharya S, Dutta S, Ghosh SS, Mukhopadhyay S (2010) Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance. Ceram Int 36(6):1837–1844

    Article  Google Scholar 

  26. Jayasankar M, Anilkumar GM, Smitha VS, Mukundan P, Madhusoodana CD, Warrier KGK (2011) Low temperature needle like mullite grain formation in sol–gel precursors coated on SiC porous substrates. Thin Solid Films 519(22):7672–7676

    Article  Google Scholar 

  27. Chen X, Gu L (2009) Sol–gel dry spinning of mullite fibers from AN/TEOS/AIP system. Mater Res Bull 44(4):865–873

    Article  Google Scholar 

  28. Okada K, Yasohama S, Hayashi S, Yasumori A (1998) Sol–gel synthesis of mullite long fibres from water solvent systems. J Eur Ceram Soc 18(13):1879–1884

    Article  Google Scholar 

  29. Song KC (1998) Preparation of mullite fibers from aluminum isopropoxide–aluminum nitrate–tetraethylorthosilicate solutions by sol–gel method. Mater Lett 35(5):290–296

    Article  Google Scholar 

  30. Gu Y, Chen Z, Borodinov N, Luzinov I, Peng F, Kornev KG (2014) Kinetics of evaporation and gel formation in thin films of ceramic precursors. Langmuir 30(48):14638–14647

    Article  Google Scholar 

  31. Beran A, Voll D, Schneider H (2001) Dehydration and structural development of mullite precursors: an FTIR spectroscopic study. J Eur Ceram Soc 21(14):2479–2485

    Article  Google Scholar 

  32. Leivo J, Lindén M, Rosenholm JM, Ritola M, Teixeira CV, Levänen E, Mäntylä TA (2008) Evolution of aluminosilicate structure and mullite crystallization from homogeneous nanoparticulate sol–gel precursor with organic additives. J Eur Ceram Soc 28(9):1749–1762

    Article  Google Scholar 

  33. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28(4):539–548

    Article  Google Scholar 

  34. Selvaraj U, Komarneni S, Roy R (1993) Structural differences in mullite xerogels from different precursors characterized by 27Al and 29Si MASNMR. J Solid State Chem 106(1):73–82

    Article  Google Scholar 

  35. Cassidy DJ, Woolfrey JL, Bartlett JR, Ben-Nissan B (1997) The effect of precursor chemistry on the crystallisation and densification of sol–gel derived mullite gels and powders. J Sol–Gel Sci Technol 10(1):19–30

    Article  Google Scholar 

  36. Ban T, Hayashi S, Yasumori A, Okada K (1996) Characterization of low temperature mullitization. J Eur Ceram Soc 16(2):127–132

    Article  Google Scholar 

  37. Okada K, Kaneda JI, Kameshima Y, Yasumori A, Takei T (2003) Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels. Mater Lett 57(21):3155–3159

    Article  Google Scholar 

  38. Douy A (2006) Crystallisation of amorphous spray-dried precursors in the Al2O3–SiO2 system. J Eur Ceram Soc 26(8):1447–1454

    Article  Google Scholar 

  39. Okada K (2008) Activation energy of mullitization from various starting materials. J Eur Ceram Soc 28(2):377–382

    Article  Google Scholar 

  40. Lee JS, Yu SC (1992) Mullite formation kinetics of coprecipitated Al2O3SiO2 gels. Mater Res Bull 27(4):405–416

    Article  Google Scholar 

  41. Takei T, Kameshima Y, Yasumori A, Okada K (2001) Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc 21(14):2487–2493

    Article  Google Scholar 

  42. Chakravorty AK (1994) Effect of pH on 980°C spinel phase-mullite formation of Al2O3–SiO2 gels. J Mater Sci 29(6):1558–1568

    Article  Google Scholar 

  43. Li DX, Thomson WJ (1990) Mullite formation kinetics of a single-phase gel. J Am Ceram Soc 73(4):964–969

    Article  Google Scholar 

  44. Schneider H, Eberhard E (1990) Thermal expansion of mullite. J Am Ceram Soc 73(7):2073–2076

    Article  Google Scholar 

  45. Maissel L (1960) Thermal expansion of silicon. J Appl Phys 31(1):211

    Article  Google Scholar 

  46. Zhang Y, Ding Y, Gao J, Yang J (2009) Mullite fibres prepared by sol–gel method using polyvinyl butyral. J Eur Ceram Soc 29(6):1101–1107

    Article  Google Scholar 

  47. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94(2):449–453

    Article  Google Scholar 

  48. Kasuya R, Isobe T, Kuma H, Katano J (2005) Photoluminescence enhancement of PEG-modified YAG: Ce3+ nanocrystal phosphor prepared by glycothermal method. J Phys Chem B 109(47):22126–22130

    Article  Google Scholar 

  49. Thouless MD (1990) Crack spacing in brittle films on elastic substrates. J Am Ceram Soc 73(7):2144–2146

    Article  Google Scholar 

  50. Saegusa T, Chujo Y (1990) An organic/inorganic hybrid polymer. J Macromol Sci—Chem 27(13-14):1603–1612

    Article  Google Scholar 

  51. Cividanes LS, Campos TM, Rodrigues LA, Brunelli DD, Thim GP (2010) Review of mullite synthesis routes by sol–gel method. J Sol–Gel Sci Technol 55(1):111–125

    Article  Google Scholar 

  52. Thompson CV (1990) Grain growth in thin films. Annu Rev Mater Sci 20(1):245–268

    Article  Google Scholar 

  53. Koch CC (2006) Nanostructured materials: processing, properties and applications. William Andrew, Toronto

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Air Force Office of Scientific Research, Contract FA9550-12-1-0459. The authors would like to express their appreciation for the helpful suggestions and support of their contract monitor, Dr. Ali Sayir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Burtovyy, R., Kornev, K. et al. The effect of polymer additives on the critical thicknesses of mullite thin films obtained from the monophasic sol–gel precursors. J Sol-Gel Sci Technol 80, 285–296 (2016). https://doi.org/10.1007/s10971-016-4117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4117-x

Keywords

Navigation