Skip to main content

Advertisement

Log in

Electrospun mullite fibers from the sol–gel precursor

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mullite fibers with diameters from 400 nm to 10 μm were fabricated from the sol–gel precursors using the electrospinning method. During the precursor synthesis, the hydrolysis was controlled to obtain highly viscous mullite sols. The viscous mullite sols were then diluted and mixed with a small amount of polyethylene oxide. Controlling the precursor rheology and spinning conditions, we obtained mullite fibers with the relatively uniform microstructure and narrow diameter distributions for each e-spinning condition. We carried out the mechanical tests for the electrospun mullite fibers since the mechanical performances of e-spin ceramic fibers have not been often reported. The tensile strengths of electrospun mullite fibers were determined using the single filament tensile test. The average tensile strength was 1.46 GPa for 5 mm gauge length, and 1.25 GPa for 10 mm gauge length. The Weibull modulus was estimated to be 3–4, which is comparable to commercial ceramic fibers. The fiber exhibited an average elastic modulus of 100 GPa. In this study, we show that controlling the hydrolysis can reduce the polymer additive amount required for electrospinning. Thus the electrospun mullite fiber has the similar mechanical properties to the dry spun counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic, and optical applications. J Am Ceram Soc 74(10):2343–2358

    Article  Google Scholar 

  2. Kriven WM, Palko JW, Sinogeikin S, Bass JD, Sayir A, Brunauer G, Schneider J (1999) High temperature single crystal properties of mullite. J Eur Ceram Soc 19(13):2529–2541

    Article  Google Scholar 

  3. Dokko PC, Pask JA, Mazdiyasni KS (1977) High-temperature mechanical properties of mullite under compression. J Am Ceram Soc 60(3–4):150–155

    Article  Google Scholar 

  4. Kanzaki S et al (1985) Sintering and mechanical properties of stoichiometric mullite. J Am Ceram Soc 68(1):C-6

    Article  Google Scholar 

  5. Chawla KK, Xu ZR, Ha J-S (1996) Processing, structure, and properties of mullite fiber/mullite matrix composites. J Eur Ceram Soc 16(2):293–299

    Article  Google Scholar 

  6. Schneider H, Schreuer J, Hildmann B (2008) Structure and properties of mullite—a review. J Eur Ceram Soc 28(2):329–344

    Article  Google Scholar 

  7. Merrill GB, Morrison JA (2000) High temperature insulation for ceramic matrix composites. U.S. Patent No. 6,013,592, 11 Jan 2000

  8. Cividanes LS, Campos TM, Rodrigues LA, Brunelli DD, Thim GP (2010) Review of mullite synthesis routes by sol–gel method. J Sol-Gel Sci Technol 55(1):111–125

    Article  Google Scholar 

  9. Kim GD, Lee DA, Lee HI, Yoon SJ (1993) A study on the development of mullitent fibers using the sol–gel process. Mater Sci Eng A 167(1):171–178

    Article  Google Scholar 

  10. Yogo T, Aksay IA (1994) Synthesis of mullite fibre from an aluminosiloxane precursor. J Mater Chem 4(2):353–359

    Article  Google Scholar 

  11. Al‐Assafi S, Cruse T, Simmons JH, Brennan AB, Sacks MD (1994) Sol–gel processing of continuous mullite fibers. In: Proceedings of the 18th annual conference on composites and advanced ceramic materials-b: ceramic engineering and science proceedings, vol 15, Issue 5, Wiley, pp 1060–1067

  12. Song KC (1998) Preparation of mullite fibers from aluminum isopropoxide–aluminum nitrate–tetraethylorthosilicate solutions by sol–gel method. Mater Lett 35(5):290–296

    Article  Google Scholar 

  13. Okada K, Yasohama S, Hayashi S, Yasumori A (1998) Sol–gel synthesis of mullite long fibres from water solvent systems. J Eur Ceram Soc 18(13):1879–1884

    Article  Google Scholar 

  14. Chen X, Gu L (2009) Sol–gel dry spinning of mullite fibers from AN/TEOS/AIP system. Mater Res Bull 44(4):865–873

    Article  Google Scholar 

  15. Zhang Y, Ding Y, Gao J, Yang J (2009) Mullite fibres prepared by sol–gel method using polyvinyl butyral. J Eur Ceram Soc 29(6):1101–1107

    Article  Google Scholar 

  16. Tan H, Ding Y, Yang J (2010) Mullite fibres preparation by aqueous sol–gel process and activation energy of mullitization. J Alloys Compd 492(1):396–401

    Article  Google Scholar 

  17. Formo E, Lee E, Campbell D, Xia Y (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8(2):668–672

    Article  Google Scholar 

  18. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510

    Article  Google Scholar 

  19. Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101

    Article  Google Scholar 

  20. Sternitzke M (1997) Structural ceramic nanocomposites. J Eur Ceram Soc 17(9):1061–1082

    Article  Google Scholar 

  21. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol 167(2):283–293

    Article  Google Scholar 

  22. Li Dan, Xia Younan (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  23. Dai Y et al (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 22(3):326–338

    Article  Google Scholar 

  24. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171

    Article  Google Scholar 

  25. Wu J, Lin H, Li JB, Zhan XB, Li JF (2009) Fabrication and characterization of electrospun mullite nanofibers. Mater Lett 63(27):2309–2312

    Article  Google Scholar 

  26. Mohammad Ali Zadeh M, Keyanpour-Rad M, Ebadzadeh T (2013) Synthesis of mullite nanofibres by electrospinning of solutions containing different proportions of polyvinyl butyral. Ceram Int 39(8):9079–9084

    Article  Google Scholar 

  27. Mohammad Ali Zadeh M, Keyanpour-Rad M, Ebadzadeh T (2014) Effect of viscosity of polyvinyl alcohol solution on morphology of the electrospun mullite nanofibres. Ceram Int 40(4):5461–5466

  28. Selvaraj U, Komarneni S, Roy R (1993) Structural differences in mullite xerogels from different precursors characterized by 27Al and 29Si MASNMR. J Solid State Chem 106(1):73–82

    Article  Google Scholar 

  29. Cassidy DJ, Woolfrey JL, Bartlett JR, Ben-Nissan B (1997) The effect of precursor chemistry on the crystallisation and densification of sol–gel derived mullite gels and powders. J Sol-Gel Sci Technol 10(1):19–30

    Article  Google Scholar 

  30. Ban T, Hayashi S, Yasumori A, Okada K (1996) Characterization of low temperature mullitization. J Eur Ceram Soc 16(2):127–132

    Article  Google Scholar 

  31. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407

    Article  Google Scholar 

  32. Dzenis YA (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919

    Article  Google Scholar 

  33. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  Google Scholar 

  34. Okada K, Kaneda JI, Kameshima Y, Yasumori A, Takei T (2003) Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels. Mater Lett 57(21):3155–3159

    Article  Google Scholar 

  35. Douy A (2006) Crystallisation of amorphous spray-dried precursors in the Al2O3–SiO2 system. J Eur Ceram Soc 26(8):1447–1454

    Article  Google Scholar 

  36. Okada K (2008) Activation energy of mullitization from various starting materials. J Eur Ceram Soc 28(2):377–382

    Article  Google Scholar 

  37. Lee JS, Yu SC (1992) Mullite formation kinetics of coprecipitated Al2O3SiO2 gels. Mater Res Bull 27(4):405–416

    Article  Google Scholar 

  38. Takei T, Kameshima Y, Yasumori A, Okada K (2001) Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc 21(14):2487–2493

    Article  Google Scholar 

  39. Chakravorty AK (1994) Effect of pH on 980 °C spinel phase-mullite formation of Al2O3–SiO2 gels. J Mater Sci 29(6):1558–1568

    Article  Google Scholar 

  40. Li DX, Thomson WJ (1990) Mullite formation kinetics of a single-phase gel. J Am Ceram Soc 73(4):964–969

    Article  Google Scholar 

  41. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72

    Article  Google Scholar 

  42. Li CS, Zhang YJ, Zhang JD (2009) Polycrystalline mullite fibers prepared by sol–gel method. J Inorg Mater 4:044

    Google Scholar 

  43. Chatterjee M, Naskar MK, Chakrabarty PK, Ganguli D (2002) Mullite fibre mats by a sol–gel spinning technique. J Sol-Gel Sci Technol 25(2):169–174

    Article  Google Scholar 

  44. Schmücker M, Flucht F, Schneider H (1996) High temperature behaviour of polycrystalline aluminosilicate fibres with mullite bulk composition. I. Microstructure and strength properties. J Eur Ceram Soc 16(2):281–285

    Article  Google Scholar 

  45. van der Zwaag S (1989) The concept of filament strength and the Weibull modulus. ASTM J Test Eval 17(5):292–298

    Article  Google Scholar 

  46. Goda K, Fukunaga H (1986) The evaluation of the strength distribution of silicon carbide and alumina fibres by a multi-modal Weibull distribution. J Mater Sci 21(12):4475–4480

    Article  Google Scholar 

  47. Wilson DM (1997) Statistical tensile strength of Nextel™ 610 and Nextel™ 720 fibres. J Mater Sci 32(10):2535–2542

    Article  Google Scholar 

  48. Fernando JA, Chawla KK, Ferber MK, Coffey D (1992) Effect of boron nitride coating on the tensile strength of Nextel 480™ fiber. Mater Sci Eng A 154(1):103–108

    Article  Google Scholar 

  49. Deleglise F, Berger MH, Jeulin D, Bunsell AR (2001) Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre. J Eur Ceram Soc 21(5):569–580

    Article  Google Scholar 

  50. Wu HF, Netrwavali AN (1992) Weibull analysis of strength–length relationships in single Nicalon SiC fibres. J Mater Sci 27(12):3318–3324

    Article  Google Scholar 

  51. Simon G, Bunsell AR (1984) Mechanical and structural characterization of the Nicalon silicon carbide fibre. J Mater Sci 19(11):3649–3657

    Article  Google Scholar 

Download references

Acknowledgments

This Project was funded by the Air Force Office of Scientific Research, Contract FA9550-12-1-0459. The authors would like to express their appreciation for the helpful suggestions and support of their contract monitor, Dr. Ali Sayir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, Z., Tsai, CC. et al. Electrospun mullite fibers from the sol–gel precursor. J Sol-Gel Sci Technol 74, 208–219 (2015). https://doi.org/10.1007/s10971-014-3599-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3599-7

Keywords

Navigation