Skip to main content
Log in

Review of mullite synthesis routes by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol–gel method for the mullite synthesis is reviewed, with particular emphasis on the characterization of monophasic and diphasic gels at low, intermediate and high temperatures and the factors that influence the hydrolysis and condensation rate of the sol–gel process, which in turn determine the properties of the final material. A wide range of studies about mullite precursors synthesized via sol–gel is discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dokko PC, Pask JA, Mazdiyasni KS (1977) High-temperature mechanical properties of mullite under compression. J Am Ceram Soc 60:150–155

    Article  CAS  Google Scholar 

  2. Jaymes I, Douy A, Massiot D, Coutures JP (1996) Characterization of mono- and diphasic mullite precursor powders prepared by aqueous routes, 27Al and 29Si MAS-NMR spectroscopy investigations. J Mater Sci 31:4581–4589

    Article  CAS  ADS  Google Scholar 

  3. Pask JA (1996) Importance of starting materials on reactions and phase equilibria in the Al2O3-SiO2 system. J Eur Ceram Soc 16:101–108

    Article  CAS  Google Scholar 

  4. Li DX, Thomson WJ (1991) Mullite formation from nonstoichiometric diphasic precursors. J Am Ceram Soc 74:2382–2387

    Article  CAS  Google Scholar 

  5. Ossaka J (1961) Tetragonal mullite-like phase from co-precipitated gels. Nature 191:1000–1001

    Article  CAS  ADS  Google Scholar 

  6. Li DX, Thomson WJ (1991) Tetragonal to orthorhombic transformation during mullite formation. J. Mater. Res. 6:819–824

    Article  CAS  ADS  Google Scholar 

  7. Okada K, Otsuka N (1986) Characterization of the spinel phase from SiO2-Al2O3 xerogels and the formation processes of mullite. J Am Ceram Soc 69:652–656

    Article  CAS  Google Scholar 

  8. Huling JC, Messing GL (1991) Epitactic nucleation of spinel in aluminum silicate gels and effect on mullite crystallization. J Am Ceram Soc 74:2374–2381

    Article  CAS  Google Scholar 

  9. Jin X-H, Gao L, Guo J-K (2002) The structural change of diphasic mullite gel studied by XRD and IR spectrum analysis. J Eur Ceram Soc 22:1307–1311

    Article  Google Scholar 

  10. Lima PT, Bertran CA, Thim GP (1998) Rotas de Síntese e a Homogeneidade dos precursores de mulita e cordierita. Quim Nova 21:608–613

    Google Scholar 

  11. Schneider H, Okada K, Pask J (1994) Mullite and mullite ceramics. Wiley, New York

    Google Scholar 

  12. Osawa CC (2004) Efeito do pH e da Uréia na Síntese de Mulita pelo Método Sol-Gel, a Partir de Sóis de Sílica e Alumina. MSc. Dissertation, Instituto de Química, Unicamp, Campinas, SP

  13. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  14. Jaymes I, Douy A, Massiot D (1995) Synthesis of a mullite precursor from aluminum nitrate and tetraethoxysilane via aqueous homogeneous precipitation: an 27Al and 29Si liquid- and solid-state NMR spectroscopic study. J Am Ceram Soc 78:2648–2654

    Article  CAS  Google Scholar 

  15. Sundaresan S, Aksay IA (1991) Mullitization of diphasic aluminosilicate gel. J Am Ceram Soc 74:2388–2392

    Article  CAS  Google Scholar 

  16. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic and optical applications. J Am Ceram Soc 74:2343–2358

    Article  CAS  Google Scholar 

  17. Hong SH, Messing GL (1998) Anisotropic grain growth in diphasic-gel-derived titania-doped mullite. J Am Ceram Soc 81:1269–1277

    CAS  Google Scholar 

  18. Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem -Eur J 12:7282–7303

    Article  CAS  Google Scholar 

  19. Airoldi C, Farias RF (2004) Alcóxidos como precursores na síntese de novos materiais através do processo sol-gel. Quim Nova 27:84–88

    CAS  Google Scholar 

  20. Roy R (1956) Aids in hydrothermal experimentation: II. Methods of making mixtures for both “dry”and “wet” phase equilibrium studies. J Am Ceram Soc 39:145–146

    Article  CAS  Google Scholar 

  21. Chakraborty AK (2005) Aluminosilicate formation in various mixtures of tetra ethyl orthosilicate (TEOS) and aluminum nitrate (ANN). Termochim Acta 427:109–116

    Article  CAS  Google Scholar 

  22. Chakraborty AK (1993) Effect of pH on 980 °C spinel phase-mullite formation of Al2O3-SiO2 gels. J Mater Sci 29:1558–1568

    Article  ADS  Google Scholar 

  23. Silva NT (2003) Síntese, caracterização e cinética de cristalização de pós precursores de cordierita por sol-gel coloidal sob ação de ácido cítrico. PhD. Dissertation, Instituto de Química, Unicamp, Campinas, SP

  24. Campos AL, Silva NT, Melo FCL, Oliveira MAS, Thim GP (2002) Crystallization Kinetics of orthorrombic mullite from diphasic gels. J Non-Cryst Solids 304:19–24

    Article  CAS  ADS  Google Scholar 

  25. Osawa C, Bertran CA (2005) Mullite formation from mixtures of alumina and silica sols: mechanism and pH effect. J Brazil Chem Soc 16:251–258

    CAS  Google Scholar 

  26. Cividanes LS, Brunelli DD, Bertran CA, Otani C, Thim GP (2009) Effect of urea on the kinetic mullite crystallization by the isoconversional, non- isothermal and Flynn-Wall-Ozawa method. Termochim Acta (submitted)

  27. Cividanes LS, Campos TMB, Bertran CA, Thim GP (2009) Effect of Urea on the mullite crystallization. J. Non-Cryst. Solids (special issue: Crystallization 2009), (submitted)

  28. Campos TMB, Cividanes LS, Garcia RBR, Kawachi EY, Thim GP (2008) Efeito do tratamento térmico e do ácido cítrico na cristalização da mulita. Proceedings of the 63° Congresso Anual da ABM, Santos, SP, Brazil, July 28-August 1, 2008

  29. Sinkó K, Mezei R, Zrínyi M (2001) Gelation of aluminosilicate systems under different chemical conditions. J Sol–Gel Sci Techn 21:147–156

    Article  Google Scholar 

  30. Mizukami F, Maeda K, Toba M, Sano T, Niwa S-I, Miyazaki M, Kojima K (1997) Effect of organic ligands used in sol-gel process on the formation of mullite. J Sol–Gel Sci Techn 8:101–106

    CAS  Google Scholar 

  31. Vol’khin VV, Kazakova IL, Pongratz P, Halwax E (2000) Mullite formation from highly homogeneous mixtures of Al2O3 and SiO2. Inorg Mater 36:375–379

    Article  Google Scholar 

  32. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  33. Chakraborty AK (1994) Role of hydrolysis water-alcohol mixture on mullitization of Al2O3-SiO2 monophasic gels. J Mater Sci 29:6131–6138

    Article  CAS  ADS  Google Scholar 

  34. Oliveira TC, Ribeiro CA, Brunelli DD, Thim GP (2009) Influence of water on the kinetics of mullite crystallization obtained from sol-gel method. Proceedings of the Crystallization 2009, Foz do Iguaçu, RS, Brazil, September 6–10, 2009

  35. Oliveira TC (2008) Estudo da influência da água no processo cinético de cristalização de mulita obtida por sol-gel. MSc. Dissertation, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP

  36. Iler RK (1979) The chemistry of silica. Wiley-VCH, New York

    Google Scholar 

  37. Corriu RJP, Leclercq D (1996) Recent developments of molecular chemistry for sol-gel processes. Angew Chem Int Edit 35:1420–1436

    Article  Google Scholar 

  38. Colomban Ph (1989) Structure of oxide gels and glasses by infrared and Raman scattering. Part 2. Mullites. J Mater Sci 24:3011–3020

    Article  CAS  ADS  Google Scholar 

  39. Yoldas BE, Partlow PP (1988) Formation of mullite and other alumina-based ceramics via hydrolytic polycondensation of alkoxides and resultant ultra- and microstructural effects. J Mater Sci 23:1895–1900

    Article  CAS  ADS  Google Scholar 

  40. Vioux A (1997) Nonhydrolytic sol-gel routes to oxides. J Mater Chem 9:2292–2299

    Article  CAS  Google Scholar 

  41. Hay JN, Raval HM (2001) Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. J Mater Chem 13:3396–3403

    Article  CAS  Google Scholar 

  42. Inoue M (2004) Glycothermal synthesis of metal oxides. JPhys-Condens Mat 16:S1291–S1303

    Article  CAS  ADS  Google Scholar 

  43. Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS, Keefer KD, Schaefer DW, Ashley CS (1982) Sol–gel transition in simple silicates. J Non-Cryst Solids 48:47–64

    Article  CAS  ADS  Google Scholar 

  44. Brinker CJ (1984) Sol–gel transition in simple silicates II. J Non-Cryst Solids 63:45–59

    Article  CAS  ADS  Google Scholar 

  45. Alfaya AAS, Kubota LTA (2002) Utilização de materiais obtidos pelo processo sol -gel na construção de biossensores. Quim Nova 25:835–841

    CAS  Google Scholar 

  46. Abreu A Jr (2002) Efeito da Uréia na Síntese de Cerâmica PZT pelo Processo Sol-Gel. MSc. Dissertation, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP

  47. Li F, Weng L-Q, Xu G-Y, Song S-H, Yu J (2005) Synthesis and characterization of microwave dielectric BaTi4O9 ceramics via EDTA-citrate gel process. Mater Lett 59:2973–2976

    Article  CAS  Google Scholar 

  48. Sanchez C, Livage J, Henry M, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non-Cryst Solids 100:65–76

    Article  CAS  ADS  Google Scholar 

  49. Hubert-Pfalzraf LG (1998) Some aspects of homo and heterometallic alkoxides based on functional alcohols. Coordin Chem Rev 178:967–997

    Article  Google Scholar 

  50. Schubert U (2005) Chemical modification of titanium alkoxides for sol-gel processing. J Mater Chem 15:3701–3715

    Article  CAS  Google Scholar 

  51. Heinricj T, Raether F (1992) Structural characterization and phase development of sol-gel-derived mullite and its precursors. J Non-Cryst Solids 147–148:152–156

    Article  Google Scholar 

  52. Chen Y-F, Vilminot S (1994) Thermal evolution of TEOS-Al(secBuO3)-Etac mullite gels. J Sol-Gel Sci Techn 2:399–402

    Article  CAS  Google Scholar 

  53. Selvaraj U, Komarneni S, ROY R (1993) Structural differences in mullite xerogels from different precursors characterized by 27Al and 29Si MASNMR. J Solid State Chem 106:73–82

    Article  CAS  ADS  Google Scholar 

  54. Cassidy DJ, Woolfrey JL, Bartlett JR, Ben-Nissan B (1997) The effect of precursor chemistry on the crystallisation and densification of sol-gel derived mullite gels and powders. J Sol-Gel Sci Techn 10:19–30

    Article  CAS  Google Scholar 

  55. Shishkov IF, Vilkov LV, Kovacs A, Hargittai I, Tkalcec E, Nass R, Schmidt H, Schmauch J, Kurajica S, Bezjak A, Ivankovic H (1998) Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry. J Non-Cryst Solids 223:57–72

    Article  Google Scholar 

  56. Ban T, Hayashi S, Yasumori A, Okada K (1996) Characterization of low temperature mullitization. J Eur Ceram Soc 16:127–132

    Article  CAS  Google Scholar 

  57. Jaymes I, Douy A (1996) New aqueous mullite precursor synthesis: Structural study by 27Al and 29Si NMR spectroscopy. J Eur Ceram Soc 16:155–160

    Article  CAS  Google Scholar 

  58. Leivo J, Lindén M, Teixeira CV, Puputti J, Rosenholm J, Levänen E, Mäntylä TA (2006) Sol-gel synthesis of a nanoparticulate aluminosilicate precursor for homogeneous mullite ceramics. J Mater Res 21:1279–1285

    Article  CAS  ADS  Google Scholar 

  59. Gerardin C, Sundaresan S, Benziger JB, Navrotsky A (1994) Structural investigation and energetics of mullite formation from sol-gel precursors. Chem Mater 6:160–170

    Article  CAS  Google Scholar 

  60. Padmaja P, Anilkumar GM, Mukundan P, Aruldhas G, Warrier KGK (2001) Characterisation of stoichiometric sol–gel mullite by fourier transform infrared spectroscopy. Int J Inorg Mater 3:693–698

    Article  CAS  Google Scholar 

  61. Lee J-E, Kim J-W, Jung Y-G, Jo C-Y, Paik U (2002) Effects of precursor pH and sintering temperature on synthesizing and morphology of sol-gel processed mullite. Ceram Int 28:935–940

    Article  CAS  Google Scholar 

  62. Wei W-C, Halloran JW (1988) Transformation kinetics of diphasic aluminosilicate gels. J Am Ceram Soc 71:581–587

    Article  CAS  Google Scholar 

  63. Li DX, Thomson WJ (1990) Mullite formation kinetics of a single-phase gel. J Am Ceram Soc 73:964–969

    Article  CAS  Google Scholar 

  64. Huling JC, Messing GL (1989) Hybrid gels for homoepitactic nucleation of mullite. J Am Ceram Soc 72:1725–1729

    Article  CAS  Google Scholar 

  65. Zhao H, Hiragushi K, Mizota Y (2003) Mullite formation of colloidal matrix hybrid aluminosilicate gel. J Sol-Gel Sci Techn 27:287–291

    Article  CAS  Google Scholar 

  66. Lim BC, Jang HM (1991) Crystallization kinetics and phase transformation characteristics in seeded monophasic cordierite gel. J Mater Res 6:2427–2434

    Article  CAS  ADS  Google Scholar 

  67. Okada K, Otsuka N (1991) Review of mullite synthesis routes in Japan. Ceram Bull 70:1633–1640

    CAS  Google Scholar 

  68. Kleebe H-J, Siegelin F, Straubinger T, Ziegler G (2001) Conversion of Al2O3-SiO2 powder mixtures to 3:2 mullite following the stable or metastable phase diagram. J Eur Ceram Soc 21:2521–2533

    Article  CAS  Google Scholar 

  69. Okada K (2008) Activation energy of mullitization from various starting materials. J Eur Ceram Soc 28:377–382

    Article  CAS  Google Scholar 

  70. Nishio T, Kijima K, Kajiwara K, Fujiki Y (1994) The influence of preparation procedure in the mullite preparation by solution method to the mixing of Al and Si and the crystallization behavior. J Ceram Soc Japan 102:462–470

    CAS  Google Scholar 

  71. Nishio T, Fujiki Y (1991) Preparation of mullite fiber by sol-gel method. J Ceram Soc Japan 99:654–659

    CAS  Google Scholar 

  72. Okada K, Aoki C, Ban T, Hayashi S, Yasumori A (1996) Effect of aging temperature on the structure of mullite precursor prepared from tetraethoxysilane and aluminum nitrate in ethanol solution. J Eur Ceram Soc 16:149–153

    Article  CAS  Google Scholar 

  73. Huling JC, Messing GL (1992) Chemistry-crystallization relations in molecular mullite gels. J Non-Cryst Solids 147–148:213–221

    Article  Google Scholar 

  74. Beran A, Voll D, Schneider H (2000) Dehydration and structural development of mullite precursors: an FTIR spectroscopic study. J EurCeram Soc 21:2479–2485

    Google Scholar 

  75. Voll D, Beran A, Schneider H (1998) Temperature-dependent dehydration of sol-gel-derived mullite precursors: an ftir spectroscopic study. J Eur Ceram Soc 18:1101–1106

    Article  CAS  Google Scholar 

  76. Sola ER, Estevan F, Torres FJ, Alarcón J (2005) Effect of thermal treatment on the structural evolution of 3:2 and 2:1 mullite monophasic gels. J Non-Cryst Solids 351:1202–1209

    Article  ADS  CAS  Google Scholar 

  77. Schneider H, Komarneni S (2005) Mullite. Wiley-VCH, Weinheim

    Book  Google Scholar 

  78. Ruscer CH, Schrader G, Gotte M (1996) Infra-red spectroscopic investigation in the mullite field of composition: Al2(Al2 + 2xSi2–2x)O10-x with 0.55 > x > 0.25. J Eur Ceram Soc 16:169–175

    Article  Google Scholar 

  79. Herculano GEGC (2007) Estudo de soluções sólidas da mulita: fabricação e propriedades. MSc. Dissertation, Universidade Federal de Ouro Preto, Ouro Preto, MG

  80. Sola ER, Torres FJ, Alarcón J (2006) Thermal evolution and structural study of 2:1 mullite from monophasic gels. J Eur Ceram Soc 26:2279–2284

    Article  CAS  Google Scholar 

  81. Voll D, Angerer P, Beran A, Schneider HA (2002) New assignment of IR vibrational modes in mullite. Vib Spectrosc 30:237–243

    Article  CAS  Google Scholar 

  82. Stefanescu M, Stoia M, Stefanescu O (2007) Thermal and FT-IR study of the hybrid ethylene-glycol-silica matrix. J Sol-Gel Sci Techn 41:71–78

    Article  CAS  Google Scholar 

  83. Simendi B, Radonji LJ (2005) Formation of sol-gel nanostructured mullite by additions of fluoride ion. J Therm Anal Calorim 79:487–492

    Article  CAS  Google Scholar 

  84. Hoffman DW, Roy R, Komarneni S (1984) Diphasic xerogels, a new class of materials: phases in the system Al2O3-SiO2. J Am Ceram Soc 67:468–471

    Article  CAS  Google Scholar 

  85. Pach L, Iratni A, Hrabe Z, Svetík S, Komarneni S (1995) Sintering and crystallization of mullite in diphasic gels. J Mater Sci 30:5490–5494

    Article  CAS  ADS  Google Scholar 

  86. Chakraborty AK, Das S (2003) Al-Si spinel phase formation in diphasic mullite gels. Ceram Int 29:27–33

    Article  CAS  Google Scholar 

  87. Tkalcec E, Ivankovic H, Nass R, Schmidt H (2003) Crystallization kinetics of mullite formation in diphasic gels containing different alumina components. J Eur Ceram Soc 23(1465–1475):2003

    Google Scholar 

  88. Komarneni S, Rutiser C (1996) Single-phase and diphasic aerogels and xerogels of mullite: preparation and characterization. J Eur Ceram Soc 16:143–147

    Article  CAS  Google Scholar 

  89. Thim GP (1997) Mulita: Síntese por Processamento Sol-Gel e Cinética de Cristalização. PhD. Dissertation, Instituto de Química, Unicamp, Campinas, SP

  90. Okada K, Kaneda J-I, Kameshima Y, Yasumori A, Takei T (2003) Crystallization kinetics of mullite from polymeric Al2O3–SiO2 xerogels. Mater Res Bull 57:3155–3159

    CAS  Google Scholar 

  91. Douy A (2006) Crystallization of amorphous spray-dried precursors in the Al2O3–SiO2 system. J Eur Ceram Soc 26:1447–1454

    Article  CAS  Google Scholar 

  92. Lee JS, Yu SC (1992) Mullite formation kinetics of coprecipitated Al2O3-SiO2 gels. Mater Res Bull 27:405–416

    Article  CAS  Google Scholar 

  93. Boonstra AH, Bernardes TNM, Smits JJ (1989) The effect of formamide on silica sol–gel process. J Non-Cryst Solids 109:141–152

    Article  CAS  ADS  Google Scholar 

  94. Cividanes LS, Garcia RBR, Kawachi EY, Bertran CA, Thim GP (2008) Efeito da uréia na cristalização da mulita. 18° CBECiMat

  95. Volllet DR, Donatti DA, Domingos RN, Oliveira I (1998) Monolithic diphasic gels of mullite by sol-gel process under ultrasound stimulation. Ultrason Sonochem 5:79–81

    Article  Google Scholar 

  96. Schneider H, Voll D, Saruhan B, Schmücker M, Schaller T, Sebald A (1994) Constitution of the γ-alumina phase in chemically produced mullite precursors. J Eur Ceram Soc 13:441–448

    Article  Google Scholar 

  97. Huang YX, Senos AM, Rocha J, Baptista JL (1997) Gel formation in mullite precursors obtained via tetraethylorthosilicate (TEOS) pre-hydrolysis. J Mater Sci 32:105–110

    Article  CAS  Google Scholar 

  98. Thim GP, Bertran CA, Barlette VE, Macêdo MIF, Oliveira MAS (2001) Experimental and Monte Carlo simulation: the role of urea in mullite synthesis. J Eur Ceram Soc 21:759–763

    Article  CAS  Google Scholar 

  99. Cividanes LS (2009) Estudo do efeito da uréia na cinética de cristalização de mulita: experimental e computacional. MSc. Dissertation, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP

  100. Bertran CA, Silva NT, Thim GP (2000) Citric acid effect on aqueous sol-gel cordierite synthesis. J Non-Cryst Solids 273:140–144

    Article  CAS  ADS  Google Scholar 

  101. Hong S-H, Messing GL (1999) Anisotropic grain growth in boria-doped diphasic mullite gels. J Eur Ceram Soc 19:521–526

    Article  CAS  Google Scholar 

  102. Assink RA, Kay BD (1993) The chemical kinetics of silicate sol-gels: functional group kinetics of tetraethoxysilane. Colloid Surf A 74:1–5

    Article  CAS  Google Scholar 

  103. Silva CR, Airoldi C (1997) Acid and base catalysts in the hybrid silica sol-gel process. Colloid Interf Sci 195:381–387

    Article  CAS  Google Scholar 

  104. Velev OD (1998) Microstructured porous silica obtained via colloidal crystal templates. Chem Mater 10:3597–3602

    Article  CAS  Google Scholar 

  105. Carr SW, Courtney L, Sullivan AC (1997) Effects of molecular organic additives on formation and properties of organosilicate and silica xerogels correlated to structural properties of the additive. Chem Mater 9:1751–1756

    Article  CAS  Google Scholar 

  106. Öye G (1997) Hydrolysis and condensation rates of tetramethylorthosilicate in alcohol solutions of hydrated metal salts as determined by means of FT-IR spectroscopy. Colloid Surf A 123:329–337

    Article  Google Scholar 

  107. Pach L, Mankos P (1997) Diphasic mullite gel pressed at 1.5 GPa: mechanical properties and microstructure of ceramics. J Mater Sci 32:3195–3199

    Article  CAS  Google Scholar 

  108. Treadwell DR, Dabbs DM, Aksay IA (1996) Mullite (3Al2O3–2SiO2) synthesis with aluminosiloxanes. Chem Mater 8:2056–2060

    Article  CAS  Google Scholar 

  109. Ki CS (1998) Preparation of mullite fibres from aluminum isopropoxide-aluminum nitrate-tetraethylorthosilicate solutions by sol-gel method. Mater Lett 35:290–296

    Article  Google Scholar 

  110. Okada K (1998) Sol-gel synthesis of mullite long fibres from water solvent systems. J Eur Ceram Soc 18:1879–1884

    Article  CAS  Google Scholar 

  111. Zhang Y, Ding Y, Gao J, Yang J (2009) Mullite fibres prepared by sol–gel method using polyvinyl butyral. J Eur Ceram Soc 29:1101–1107

    Article  CAS  Google Scholar 

  112. Ivankovic H, Tkalcec E, Rein R, Schmidt H (2006) Microstructure and high temperature 4-point bending creep of sol-gel derived mullite ceramics. J Eur Ceram Soc 26:1637–1646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge CAPES, CNPQ and FAPESP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana S. Cividanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cividanes, L.S., Campos, T.M.B., Rodrigues, L.A. et al. Review of mullite synthesis routes by sol–gel method. J Sol-Gel Sci Technol 55, 111–125 (2010). https://doi.org/10.1007/s10971-010-2222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2222-9

Keywords

Navigation