Skip to main content
Log in

Critical Study of Hierarchical Lattice Renormalization Group in Magnetic Ordered and Quenched Disordered Systems: Ising and Blume–Emery–Griffiths Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Renormalization group based on the Migdal–Kadanoff bond removal approach is often considered a simple and valuable tool to understand the critical behavior of complicated statistical mechanical models. In presence of quenched disorder, however, predictions obtained with the Migdal–Kadanoff bond removal approach quite often fail to quantitatively and qualitatively reproduce critical properties obtained in the mean-field approximation or by numerical simulations in finite dimensions. In an attempt to overcome this limitation we analyze the behavior of Ising and Blume–Emery–Griffiths models on more structured hierarchical lattices. We find that, apart from some exceptions, the failure is not limited to Midgal–Kadanoff cells but originates right from the hierarchization of Bravais lattices on small cells, and shows up also when in-cell loops are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Previous results [47] on this lattice suffers from some inconsistency, as discussed in Ref. [48].

  2. The argument of the logarithm is always positive because the variance can either shrink or increase but does not oscillate between different RSRG steps.

References

  1. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754n++1756 (1979)

  2. Parisi, G.: A sequence of approximated solutions to the S–K model for spin glasses. J. Phys. A Math. Gen. 13, L115 (1980)

    Article  ADS  Google Scholar 

  3. Mézard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  4. Amit, D.J.: Modeling Brain Functions: The World of Attractor Neural Networks. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  5. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  6. Chen, J.H., Lubensky, T.C.: Mean field and \(\epsilon \)-expansion study of spin glasses. Phys. Rev. B 16, 2106 (1977)

    Article  ADS  Google Scholar 

  7. De Dominicis, C., Kondor, I., Temesvari, T.: Beyond the Sherrington–Kirkpatrick model. In: Directions in Condensed Matter Physics, vol. 12, p. 119. World Scientific, Singapore (1998)

  8. De Dominicis, C., Giardina, I.: Random Fields and Spin Glasses. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  9. Bray, A.J., Moore, M.A.: Disappearance of the de Almeida-Thouless line in six dimensions. Phys. Rev. B 83, 224408 (2011)

    Article  ADS  Google Scholar 

  10. Parisi, G., Temesvari, T.: Replica symmetry breaking in and around six dimensions. Nucl. Phys. B [FS] 858, 293–316 (2012)

    Google Scholar 

  11. Stein, D.L., Newman, C.M.: Spin Glasses and Complexity. Princeton University Press, Princeton (2012)

    Google Scholar 

  12. Amit, D.J., Martin-Mayor, V.: Field Theory; The Renormalization Group and Critical Phenomena. World Scientific, Singapore (2005)

    Book  Google Scholar 

  13. Le Bellac, M.: Quantum and Statistical Field Theory. Oxford Science Publications, Oxford (1992)

    Google Scholar 

  14. Kadanoff, L.P.: Notes on Migdal’s recursion formulas. Ann. Phys. 100(1), 359–394 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ma, S.K.: Modern Theory of Critical Phenomena. Benjamin-Cummings, Reading (1976)

  16. Leeuwen, J.M.J., Niemeijer, T.: Wilson theory for spin systems on triangular lattice. Phys. Rev. Lett. 31(23), 1411 (1973)

    Article  ADS  Google Scholar 

  17. Berker, A.N., Wortis, M.: Blume–Emery–Griffiths–Potts model in two dimensions: phase diagram and critical proprieties from a position-space renormalization group. Phys. Rev. B 14(11), 4946 (1976)

    Article  ADS  Google Scholar 

  18. Fisher, K.H., Kinzel, W.: Existence of a phase transition in spin glasses? J. Phys. C 11, 2115 (1978)

    Article  ADS  Google Scholar 

  19. Tatsumi, T.: Renormalization-group approach to spin glass transition of a random bond Ising model in two- and three-dimensions. Prog. Theor. Phys. 59, 405 (1978)

    Article  ADS  Google Scholar 

  20. Franz, S., Parisi, G., Virasoro, M.A.: Interfaces and louver critical dimension in a spin glass model. J. Phys. I (France) 4, 1657 (1994)

    Google Scholar 

  21. Franz, S., Toninelli, F.L.: A field-theoretical approach to the spin glass transition: models with long but finite interaction range. J. Stat. Mech. P01008 (2005)

  22. Boettcher, S.: Stiffness of the Edwards–Anderson model in all dimensions. Phys. Rev. Lett. 95, 197205 (2005)

    Article  ADS  Google Scholar 

  23. Berker, A.N., Ostlund, S.: Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C 12(22), 4961 (1979)

    Article  ADS  Google Scholar 

  24. Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Phys. Rev. B 26, 5022–5032 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. McKay, S.R., Berker, A.N., Kirkpatrick, S.: Spin-glass behavior in frustrated Ising models with chaotic renormalization-group trajectories. Phys. Rev. Lett. 48, 767–770 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ohzeki, M., Nishimori, H., Berker, A.N.: Multicritical points for spin-glass models on hierarchical lattices. Phys. Rev. E 77, 061116 (2008)

    Article  ADS  Google Scholar 

  27. Salmon, O.R., Agostini, B.T., Nobre, F.D.: Ising spin glasses on Wheatstone–Bridge hierarchical lattices. Phys. Lett. A 374(15–16), 1631–1635 (2010)

    Article  ADS  MATH  Google Scholar 

  28. Moore, M.A., Bokil, H., Drossel, B.: Evidence for the droplet picture of spin glasses. Phys. Rev. Lett. 81, 4252 (1998)

    Article  ADS  Google Scholar 

  29. Ricci-Tersenghi, F., Ritort, F.: Absence of ageing in the remanent magnetization in Migdal–Kadanoff spin glasses. J. Phys. A Math. Gen. 33, 3727 (2000)

    Article  ADS  MATH  Google Scholar 

  30. Nobre, F.D.: Phase diagram of the two-dimensional \(\pm \)J Ising spin glass. Phys. Rev. E 64, 046108 (2001)

    Article  ADS  Google Scholar 

  31. Nishimori, H., Ohzeki, M.: Multicritical point of spin glasses. Phys. A Stat. Mech. Appl. 389, 2907–2910 (2010)

    Article  Google Scholar 

  32. Andelman, D., Berker, A.N.: q-State Potts models in \(d\) dimensions: Migdal–Kadanoff approximation. J. Phys. A Math. Gen. 14(4), L91 (1981)

    Article  ADS  Google Scholar 

  33. Ozcelik, V.O., Berker, A.N.: Blume–Emery–Griffiths spin glass and inverted tricritical points. Phys. Rev. E 78, 031104 (2008)

    Article  ADS  Google Scholar 

  34. da Silva, L.R., Tsallis, C., Schwachheim, G.: Anisotropic cubic lattice Potts ferromagnet: renormalisation group treatment. J. Phys. A Math. Gen. 17, 3209 (1984)

    Article  ADS  Google Scholar 

  35. Tsallis, C., de Magalhães, A.C.N.: Pure and random Potts-like models: real-space renormalization-group approach. Phys. Rep. 268(5–6), 305–430 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. Crisanti, A., Leuzzi, L.: Stable solution of the simplest spin model for inverse freezing. Phys. Rev. Lett. 95, 087201 (2005)

    Google Scholar 

  37. Paoluzzi, M., Leuzzi, L., Crisanti, A.: Thermodynamic first order transition and inverse freezing in a 3D spin glass. Phys. Rev. Lett. 104, 120602 (2010)

    Article  ADS  Google Scholar 

  38. Crisanti, A., Leuzzi, L., Rizzo, T.: Complexity in mean-field spin glass models: the Ising p-spin. Phys. Rev. B 71, 094202 (2005)

    Article  ADS  Google Scholar 

  39. Leuzzi, L., Paoluzzi, M., Crisanti, A.: Random Blume–Capel model on a cubic lattice: first-order inverse freezing in a three-dimensional spin-glass system. Phys. Rev. B 83, 014107 (2011)

    Article  ADS  Google Scholar 

  40. Paoluzzi, M., Leuzzi, L., Crisanti, A.: The overlap parameter across an inverse first-order phase transition in a 3D spin-glass. Philos. Mag. 91, 1966–1976 (2011)

    Article  ADS  Google Scholar 

  41. Migdal, A.A.: Phase transitions in gauge and spin-lattice systems. Zh. Eksp. Teor. Fiz. 69, 1457 (1975)

    Google Scholar 

  42. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  43. Harris, A.B., Lubemsky, T.C.: Renormalization-group approach to the critical behavior of random-spin models. Phys. Rev. Lett. 33, 1540 (1974)

    Article  ADS  Google Scholar 

  44. Andelman, D., Berker, A.N.: Scale-invariant quenched disorder and its stability criterion at random critical points. Phys. Rev. B 29, 2630–2635 (1984)

    Article  ADS  Google Scholar 

  45. Southern, B.W., Young, A.P.: Real space rescaling study of spin glass behaviour in three dimensions. J. Phys. C 10, 2179 (1977)

    Article  ADS  Google Scholar 

  46. Cao, M.S., Machta, J.: Migdal-Kadanoff study of the random-field Ising model. Phys. Rev. B 48, 3177–3182 (1993)

    Article  ADS  Google Scholar 

  47. Salmon, O.R., Nobre, F.D.: Spin-glass attractor on tridimensional hierarchical lattices in the presence of an external magnetic field. Phys. Rev. E 79, 051122 (2009)

    Article  ADS  Google Scholar 

  48. Berker, A.N.: Comment on “Spin-glass attractor on tridimensional hierarchical lattices in the presence of an external magnetic field”. Phys. Rev. E 81, 043101 (2010)

    Article  ADS  Google Scholar 

  49. Bray, A.J., Moore, M.A.: Scaling theory of the random-field Ising model. J. Phys. C. Solid State Phys. 18(28), L927 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  50. Berker, A.N., McKay, S.R.: Modified hyperscaling relation for phase transitions under random fields. Phys. Rev. B 33, 4712–4715 (1986)

    Article  ADS  Google Scholar 

  51. Falicov, A., Berker, A.N., McKay, S.R.: Renormalization-group theory of the random-field Ising model in three dimensions. Phys. Rev. B 51, 8266–8269 (1995)

    Article  ADS  Google Scholar 

  52. Middleton, A.A., Fisher, D.S.: Three-dimensional random-field Ising magnet: interfaces, scaling, and the nature of states. Phys. Rev. B 65, 134411 (2002)

    Article  ADS  Google Scholar 

  53. Hartmann, A.K.: Critical exponents of four-dimensional random-field Ising systems. Phys. Rev. B 65, 174427 (2002)

    Article  ADS  Google Scholar 

  54. Harris, A.B.: Effect of random defects on the critical behaviour of Ising models. J. Phys. C Solid State Phys. 7, 1671 (1974)

    Article  ADS  Google Scholar 

  55. Chayes, J.T., Chayes, L., Fisher, D.S., Spencer, T.: Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999–3002 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  56. Kinzel, W., Domany, E.: Critical properties of random Potts models. Phys. Rev. B 23, 3421–3434 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  57. Andelman, D., Aharony, A.: Critical behavior with axially correlated random bonds. Phys. Rev. B 31, 4305–4312 (1985)

    Article  ADS  Google Scholar 

  58. Derrida, B., Dickinson, H., Yeomans, J.: On the Harris criterion for hierarchical lattices. J. Phys. A 18(1), L53 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  59. Mukherji, S., Bhattacharjee, S.M.: Failure of the Harris criterion for directed polymers on hierarchical lattices. Phys. Rev. E 52, 1930–1933 (1995)

    Article  ADS  Google Scholar 

  60. Efrat, A.: Harris criterion on hierarchical lattices: rigorous inequalities and counterexamples in Ising systems. Phys. Rev. E 63, 066112 (2001)

    Article  ADS  Google Scholar 

  61. Domany, E.: Some results for the two-dimensional Ising model with competing interactions. J. Phys. C 12, L119 (1979)

    Article  ADS  Google Scholar 

  62. Ohzeki, M., Thomas, C.K., Katzgraber, H.G., Bombin, H., Martin-Delgado, M.A.: Lack of universality in phase boundary slopes for spin glasses on self dual lattices. J. Stat. Mech. P02004 (2011)

  63. Ohzeki, M., Nishimori, H.: Analytical evidence for the absence of spin glass transition on self-dual lattices. J. Phys. A Math. Gen. 42, 332001 (2009)

    Article  MathSciNet  Google Scholar 

  64. Nishimori, H.: Internal energy, specific heat and correlation function of the bond-random Ising model. Prog. Theor. Phys. 66, 1169 (1981)

    Article  ADS  Google Scholar 

  65. Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  66. Nishimori, H., Nemoto, K.: Duality and multicritical point of two-dimensional spin glasses. J. Phys. Soc. Jpn. 71, 1198 (2002)

    Article  ADS  Google Scholar 

  67. Maillard, J.M., Nemoto, K., Nishimori, H.: Symmetry, complexity and multicritical point of the two-dimensional spin glass. J. Phys. A 36, 9799 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Takeda, K., Nishimori, H.: Self-dual random-plaquette gauge model and the quantum toric code. Nucl. Phys. B 686(3), 377–396 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Hinczewski, M., Berker, A.N.: Multicritical point relations in three dual pairs of hierarchical-lattice Ising spin glasses. Phys. Rev. B 72, 144402 (2005)

    Article  ADS  Google Scholar 

  70. Reis, F.D.A.A., de Queiroz, S.L.A., dos Santos, R.R.: Universality, frustration, and conformal invariance in two-dimensional random Ising magnets. Phys. Rev. B 60, 6740–6748 (1999)

    Article  ADS  Google Scholar 

  71. Singh, R.R.P., Adler, J.: High-temperature expansion study of the Nishimori multicritical point in two and four dimensions. Phys. Rev. B 54, 364–367 (1996)

    Article  ADS  Google Scholar 

  72. Ozeki, Y., Ito, N.: Multicritical dynamics for the +/\(-\) J Ising model. J. Phys. A 31, 5451 (1998)

    Article  ADS  MATH  Google Scholar 

  73. Kawashima, N., Rieger, H.: Finite-size scaling analysis of exact ground states for +/\(-\)J spin glass models in two dimensions. Europhys. Lett. 39, 85 (1997)

    Article  ADS  Google Scholar 

  74. Bray, A.J., Moore, M.A.: Heidelberg colloquium on glassy dynamics. In: van Hemmen, J.L. (ed) Lecture Notes in Physics., vol. 275, pp. 121–153. Springer, Berlin (1987)

  75. Bray, A.J., Moore, M.A.: Lower critical dimension of Ising spin glasses: a numerical study. J. Phys. C 17(18), L463 (1984)

    Article  ADS  Google Scholar 

  76. Nobre, F.D.: Real-space renormalization-group approaches for two-dimensional Gaussian Ising spin glass. Phys. Lett. A 250, 163 (1998)

    Article  ADS  Google Scholar 

  77. Hartmann, A.K., Bray, A.J., Carter, A.C., Moore, M.A., Young, A.P.: Stiffness exponent of two-dimensional Ising spin glasses for nonperiodic boundary conditions using aspect-ratio scaling. Phys. Rev. B 66, 224401 (2002)

    Article  ADS  Google Scholar 

  78. Weigel, M., Johnston, D.: Frustration effects in antiferromagnets on planar random graphs. Phys. Rev. B 76, 054408 (2007)

    Article  ADS  Google Scholar 

  79. Erbas, A., Tuncer, A., Yücesoy, B., Berker, A.N.: Phase diagrams and crossover in spatially anisotropic \(d=3\) Ising, \(XY\) magnetic, and percolation systems: exact renormalization-group solutions of hierarchical models. Phys. Rev. E 72, 026129 (2005)

    Article  ADS  Google Scholar 

  80. Talapov, A.L., Blöte, H.W.J.: The magnetization of the 3D Ising model. J. Phys. A 29(17), 5727 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  81. Nienhuis, B., Nauenberg, M.: First-order phase transitions in renormalization-group theory. Phys. Rev. Lett. 35, 477–479 (1975)

    Article  ADS  Google Scholar 

  82. Pelissetto, A., Vicari, E.: Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549–727 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. Katzgraber, H.G., Körner, M., Young, A.P.: Universality in three-dimensional Ising spin glasses: a Monte Carlo study. Phys. Rev. B 73(22), 224432 (2006)

    Article  ADS  Google Scholar 

  84. Hasenbusch, M., Pelissetto, A., Vicari, E.: Critical behavior of three-dimensional Ising spin glass models. Phys. Rev. B 78, 214205 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  85. Jörg, T., Katzgraber, H.G.: Evidence for universal scaling in the spin-glass phase. Phys. Rev. Lett. 101(19), 197205 (2008)

    Article  ADS  Google Scholar 

  86. Blume, M., Emery, V.J., Griffiths, R.B.: Ising model for the \(\lambda \) transition and phase separation in He\(^{3}\)–He\(^{4}\) mixtures. Phys. Rev. A 4, 1071–1077 (1971)

    Article  ADS  Google Scholar 

  87. Blume, M.: Theory of the first-order magnetic phase change in UO\(_{2}\). Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  88. Capel, H.W.: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966)

    Article  ADS  Google Scholar 

  89. Saul, D.M., Wortis, M., Stauffer, D.: Tricritical behavior of the Blume–Capel model. Phys. Rev. B 9, 4964 (1974)

    Article  ADS  Google Scholar 

  90. Deserno, M.: Tricriticality and the Blume–Capel model: a Monte Carlo study within the microcanonical ensemble. Phys. Rev. E 56, 5204 (1997)

    Article  ADS  Google Scholar 

  91. Chakraborty, K.G.: Effective-field model for a spin-1 Ising system with dipolar and quadrupolar interactions. Phys. Rev. B 29, 1454–1457 (1984)

    Article  ADS  Google Scholar 

  92. Baran, O.R., Levitskii, R.R.: Reentrant phase transitions in the Blume–Emery–Griffiths model on a simple cubic lattice: the two-particle cluster approximation. Phys. Rev. B 65, 172407 (2002)

    Article  ADS  Google Scholar 

  93. Crisanti, A., Leuzzi, L.: First-order phase transition and phase coexistence in a spin-glass model. Phys. Rev. Lett. 89, 237204 (2002)

    Article  ADS  Google Scholar 

  94. Crisanti, A., Ritort, F.: Intermittency of glassy relaxation and the emergence of a non-equilibirum spontaneous measure in the aging regime. Europhys. Lett. 66, 253 (2004)

    Article  ADS  Google Scholar 

  95. Falicov, A., Berker, A.N.: Tricritical and critical end-point phenomena under random bonds. Phys. Rev. Lett. 76, 4380–4383 (1996)

    Article  ADS  Google Scholar 

  96. Puha, I., Diep, H.T.: Random-bond and random-anisotropy effects in the phase diagram of the Blume–Capel model. J. Magn. Magn. Mater. 224, 85–92 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n 290038, NETADIS project and from the Italian MIUR under the Basic Research Investigation Fund FIRB2008 program, Grant No. RBFR08M3P4, and under the PRIN2010 program, grant code 2010HXAW77-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Leuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antenucci, F., Crisanti, A. & Leuzzi, L. Critical Study of Hierarchical Lattice Renormalization Group in Magnetic Ordered and Quenched Disordered Systems: Ising and Blume–Emery–Griffiths Models. J Stat Phys 155, 909–931 (2014). https://doi.org/10.1007/s10955-014-0977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0977-z

Keywords

Navigation