Skip to main content
Log in

Tight-binding Model in First and Second Quantization for Band Structure Calculations

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we review the tight-binding model in the first and second quantization and show how it can be used to calculate the energy spectrum of some crystals. From an approach based on the Schrödinger equation (first quantization), we demonstrate the procedure for writing a generic Hamiltonian in the second quantization formalism. The connection between these two formalisms is generally not discussed in technical and applied works. As application examples, we use both methodologies to calculate the energy spectrum of a linear chain and a square lattice analytically, initially considering only one site per unit cell and later taking two sites per unit cell. Next, we apply the tight-binding model to graphene and compare such description with the brick lattice, showing that graphene lattice can be mapped as a square lattice with some hopping parameters being neglected. Finally, we apply the model to the \(\tau _3\)-lattice, a three-band system. In all cases, we present the energy spectrum and the density of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  2. F. Bloch, Zeitschrift für physik 52(7), 555 (1929)

    Article  ADS  Google Scholar 

  3. J.C. Slater, G.F. Koster, Phys. Rev. 94(6), 1498 (1954)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

  5. A. Rudenko, S. Yuan, M. Katsnelson, Phys. Rev. B 92(8), 085419 (2015)

  6. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon, Phys. Rev. B 66(3), 035412 (2002)

  7. A.V. Gert, M.O. Nestoklon, I.N. Yassievich, J. Exp. Theor. Phys. 121(1), 115 (2015)

    Article  ADS  Google Scholar 

  8. R.M. Ribeiro, N.M.R. Peres, Phys. Rev. B 83(23), 235312 (2011)

  9. K. Tagami, M. Tsukada, T. Matsumoto, T. Kawai, Phys. Rev. B 67(24), 245324 (2003)

  10. Y. Liu, P. Hui, Phys. Rev. B 57(20), 12994 (1998)

    Article  ADS  Google Scholar 

  11. J.A. Fürst, J. Hashemi, T. Markussen, M. Brandbyge, A.-P. Jauho, R.M. Nieminen, Phys. Rev. B 80(3), 035427 (2009)

  12. F.R.V. Araújo, D.R. da Costa, A.C.S. Nascimento, J.M. Pereira Jr., J. Phys. Condens. Matter 32(42), 425501 (2020)

  13. F.R.V. Araújo, D.R. da Costa, F.N. Lima, A.C.S. Nascimento, J.M. Pereira Jr., J. Phys. Condens. Matter 33(37), 375501 (2021)

  14. K.H. Ding, L.K. Lim, G. Su, Z.Y. Weng, Phys. Rev. B 97(3), 035123 (2018)

  15. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  16. G. Dresselhaus, M.S. Dresselhaus, R. Saito, Physical properties of carbon nanotubes (World scientific, Singapore, 1998)

  17. Note that the method’s name referred here as transfer matrix is also given to another method associated with scattering problems in quantum mechanics and electromagnetism (see Ref. [18])

  18. P. Markos, C.M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008)

    Book  Google Scholar 

  19. M.P. Marder, Condensed Matter Physics (John Wiley & Sons, New York, 2010)

    Book  Google Scholar 

  20. K.F. Garrity, K. Choudhary, Sci. Data 8, 1 (2021)

    Article  Google Scholar 

  21. A.L. Fetter, J.D. Walecka, Quantum theory of many-particle systems (Courier Corporation, New York, 2012)

    Google Scholar 

  22. I.S. Oliveira, V.L.B. De Jesus, Introdução à física do estado sólido (Editora Livraria da Física, São Paulo, 2005)

    Google Scholar 

  23. C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics, vol. 8 (Wiley, New York, 1996)

    Google Scholar 

  24. D.R. da Costa, M. Zarenia, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 92(11), 115437 (2015)

  25. R. Kundu, Mod. Phys. Lett. B 25(03), 163 (2011)

    Article  ADS  Google Scholar 

  26. B.A. McKinnon, T.C. Choy, Phys. Rev. B 52(20), 14531 (1995)

    Article  ADS  Google Scholar 

  27. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59(12), 8271 (1999)

    Article  ADS  Google Scholar 

  28. G. Montambaux, C. R. Phys. 19(5), 285 (2018)

    Article  ADS  Google Scholar 

  29. J.M. Hou, W. Chen, Sci. Rep. 5(1), 1 (2015)

    Article  MathSciNet  Google Scholar 

  30. D.A. Abanin, T. Kitagawa, I. Bloch, E. Demler, Phys. Rev. Lett. 110(16), 165304 (2013)

  31. E.T. Sisakht, M.H. Zare, F. Fazileh, Phys. Rev. B 91(8), 085409 (2015)

  32. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  33. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I. Grigorieva, S.V.B. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

  34. F. Piéchon, J.N. Fuchs, A. Raoux, G. Montambaux, J. Phys. Conf. Ser. 603, 012001 (2015)

  35. A. Beggi, I. Siloi, C. Benedetti, E. Piccinini, L. Razzoli, P. Bordone, M.G. Paris, Eur. J. Phys. 39(6), 065401 (2018)

Download references

Acknowledgements

Discussions with André J. Chaves are gratefully acknowledged. The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of Brazil for financial support, and to Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP). D.R.C is supported by CNPq grant numbers 310019/2018-4 and 437067/2018-1. J.M.P.Jr. and D.R.C are supported by bilateral ITA-UFC CNPq project number 400879/2019-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Lima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, W.P., Araújo, F.R.V., da Costa, D.R. et al. Tight-binding Model in First and Second Quantization for Band Structure Calculations. Braz J Phys 52, 42 (2022). https://doi.org/10.1007/s13538-021-01027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01027-x

Keywords

Navigation