Skip to main content
Log in

Determinant Representation for Some Transition Probabilities in the TASEP with Second Class Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the transition probabilities for the totally asymmetric simple exclusion process (TASEP) on the infinite integer lattice with a finite, but arbitrary number of first and second class particles. Using the Bethe ansatz we present an explicit expression of these quantities in terms of the Bethe wave function. In a next step it is proved rigorously that this expression can be written in a compact determinantal form for the case where the order of the first and second class particles does not change in time. An independent geometrical approach provides insight into these results and enables us to generalize the determinantal solution to the multi-class TASEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    MATH  Google Scholar 

  2. Schütz, G.M.: In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic, London (2001)

    Chapter  Google Scholar 

  3. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    MATH  Google Scholar 

  4. Burgers, J.M.: The Nonlinear Diffusion Equation. Riedel, Boston (1974)

    MATH  Google Scholar 

  5. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)

    Article  MATH  ADS  Google Scholar 

  6. Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. arXiv:1002.1879 (2010)

  7. Angel, O.: The stationary measure of a 2-type totally asymmetric exclusion process. J. Combin. Theory Ser. A 113, 625 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ferrari, P., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrari, P.A., Fontes, L.R.G.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Derrida, B., Lebowitz, J.L., Speer, E.: Shock profiles for the asymmetric simple exclusion process in one dimension. J. Stat. Phys. 89, 135 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Belitsky, V., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Probab. 7, 11 (2002)

    MathSciNet  Google Scholar 

  12. Krebs, K., Jafarpour, F.H., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. New J. Phys. 5, 145 (2003)

    Article  ADS  Google Scholar 

  13. Speer, E.R.: In: Fannes, C., Verbuere, A. (eds.) On Three Levels: Micro, Meso and Macroscopic Approaches in Physics, pp. 91–102. Plenum, New York (1994)

    Google Scholar 

  14. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Microscopic-shock profiles: exact solution of a non-equilibrium system. Europhys. Lett. 22, 651 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. Godrechè, C., et al.: Spontaneous symmetry breaking: exact results for a biased random walk model of an exclusion process. J. Phys. A: Math. Gen. 28, 6039 (1995)

    Article  MATH  ADS  Google Scholar 

  16. Schütz, G.M.: Critical phenomena and universal dynamics in one-dimensional driven diffusive systems with two species of particles. J. Phys. A: Math. Gen. 36, R339 (2003)

    Article  MATH  Google Scholar 

  17. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Theor. 40, R333 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Ferrari, P.A., Gonçalves, P., Martin, J.B.: Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri. Poincaré Probab. Stat. 45, 1048 (2009)

    Article  MATH  Google Scholar 

  20. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35, 807 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135, 217 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion processes. J. Stat. Phys. 88, 427 (1997)

    Article  MATH  ADS  Google Scholar 

  23. Gwa, L.H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Nagao, T., Sasamoto, T.: Asymmetric simple exclusion process and modified random matrix ensembles. Nucl. Phys. B 699, 487 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Rákos, A., Schütz, G.M.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Priezzhev, V.B., Schütz, G.M.: Exact solution of the Bernoulli matching model of sequence alignment. J. Stat. Mech. Theory Exp., P09007 (2008)

  27. Brankov, J., Priezzhev, V.B., Shelest, R.V.: Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process. Phys. Rev. E 69, 066136 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A, Math. Gen. 38, L549 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. Povolotsky, A.M., Priezzhev, V.B.: Determinant solution for the totally asymmetric exclusion process with parallel update. J. Stat. Mech., P07002 (2006)

  30. Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech., P07007 (2007)

  31. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron J. Probab. 13, 1380 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Tracy, C.A., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132, 291 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Schultz, C.L.: Eigenvectors of the multi-component generalization of the six-vertex model. Physica A 122, 71 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  36. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Sutherland, B.: Further results for the many-body problem in one dimension. Phys. Rev. Lett. 20, 98 (1968)

    Article  ADS  Google Scholar 

  38. Arita, C., Kuniba, A., Sakai, K., Sawabe, T.: Spectrum of a multi-species asymmetric simple exclusion process on a ring. J. Phys. A: Math. Theor. 42, 345002 (2009)

    Article  MathSciNet  Google Scholar 

  39. Alcaraz, F.C., Rittenberg, V.: Reaction-diffusion processes as physical realizations of Hecke algebras. Phys. Lett. B 314, 377 (1993)

    Article  ADS  Google Scholar 

  40. Popkov, V., Fouladvand, E., Schütz, G.M.: A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains. J. Phys. A: Math. Gen. 35, 7187 (2002)

    Article  MATH  ADS  Google Scholar 

  41. Priezzhev, V.B.: Exact nonstationary probabilities in the asymmetric exclusion process on a ring. Phys. Rev. Lett. 91, 050601 (2003)

    Article  ADS  Google Scholar 

  42. Lushnikov, A.A.: Binary reaction 1+1.0→0 in one dimension. Sov. Phys. JETP 64, 811 (1986)

    Google Scholar 

  43. Lushnikov, A.A.: Binary reaction 1+1.0→0 in one dimension. Phys. Lett. A 120, 135 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  44. Barma, M., Grynberg, M.D., Stinchcombe, R.B.: Jamming and kinetics of deposition-evaporation systems and associated quantum spin models. Phys. Rev. Lett. 70, 1033 (1993)

    Article  ADS  Google Scholar 

  45. Stinchcombe, R.B., Grynberg, M.D., Barma, M.: Diffusive dynamics of deposition-evaporation systems, jamming, and broken symmetries in related quantum-spin models. Phys. Rev. E 47, 4018 (1993)

    Article  ADS  Google Scholar 

  46. Schütz, G.M.: Diffusion-annihilation in the presence of a driving field. J. Phys. A 28, 3405 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Dorlas, T.C., Povolotsky, A.M., Priezzhev, V.B.: From vicious walkers to TASEP. J. Stat. Phys. 135, 483 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakuntala Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, S., Schütz, G.M. Determinant Representation for Some Transition Probabilities in the TASEP with Second Class Particles. J Stat Phys 140, 900–916 (2010). https://doi.org/10.1007/s10955-010-0022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0022-9

Keywords

Navigation