Skip to main content
Log in

Multi-state Asymmetric Simple Exclusion Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is known that the Markov matrix of the asymmetric simple exclusion process (ASEP) is invariant under the \(U_q(sl_2)\) algebra. This is the result of the fact that the Markov matrix of the ASEP coincides with the generator of the Temperley–Lieb (TL) algebra, the dual algebra of the \(U_q(sl_2)\) algebra. Various types of algebraic extensions have been considered for the ASEP. In this paper, we considered the multi-state extension of the ASEP, by allowing more than two particles to occupy the same site. We constructed the Markov matrix by dimensionally extending the TL generators and derived explicit forms of particle densities and currents on steady states. Then we showed how decay lengths differ from the original two-state ASEP under closed boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. C. Arita pointed out existence of matrix product states for the multi-state ASEP with closed boundary conditions in private discussions.

References

  1. Alcaraz, F.C., Rittenberg, V.: Reaction-diffusion processes as physical realizations of Hecke algebras. Phys. Lett. B 23, 377–380 (1993)

    Article  ADS  Google Scholar 

  2. Alcaraz, F.C., Damahapatra, S., Rittenberg, V.: \(N\)-species stochastic models with boundaries and quadratic algebras. J. Phys. A: Math. Gen. 31, 845–878 (1998)

    Article  ADS  MATH  Google Scholar 

  3. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik–Deift–Johansson theorem. Bull. Am. Math. Soc. 36, 413–432 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arita, C., Mallick, K.: Matrix product solution of an inhomogeneous multi-species TASEP. J. Phys. A Math. Theor. 46, 085002 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arita, C., Kuniba, A., Sakai, K., Sawabe, T.: Spectrum of a multi-species asymmetric simple exclusion process on a ring. J. Phys. A Math. Theor. 42, 345002 (2009)

    Article  MathSciNet  Google Scholar 

  6. Arita, C., Ayyer, A., Mallick, K., Prolhac, S.: Recursive structures in the multispecies TASEP. J. Phys. A Math. Theor. 44, 335004 (2011)

    Article  Google Scholar 

  7. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baryshnikov, Y.: GUEs and queues. Probab. Theory Relat. Fields 119, 256–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bethe, H.A.: Zur Theorie der Metalle, I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Physik 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  10. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249–273 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Borodin, A., Ferrari, P.J., Sasamoto, T.: Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Commun. Math. Phys. 283, 417–449 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Breton, J.-C., Houdrë, C.: Asymptotics for random Young diagrams when the word length and alphabet size simultaneously grow to infinity. Bernoulli 16, 471–492 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chistyakov, G.P., Götze, F.: Distribution of the shape of Markovian random words. Probab. Theory Relat. Fields 129, 18–36 (2004)

    Article  MATH  Google Scholar 

  15. Chrowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. de Gier, J., Essler, F.H.: Exact spectral gaps of the asymmetric exclusion process with open boundaries. J. Stat. Mech. Theor. Exp. 2006, P12011 (2006)

    Article  Google Scholar 

  17. Deguchi, T., Matsui, C.: Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry. Nucl. Phys. B814, 405–438 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theor. Exp. 2007, P07023 (2007)

    Article  MathSciNet  Google Scholar 

  19. Derrida, B., Evans, M.R.: Exact correlation functions in an asymmetric exclusion model with open boundaries. J. Phys. 3, 311–322 (1993)

    MathSciNet  Google Scholar 

  20. Derrida, B., Domany, E., Mukamel, D.: An exact solution of the one dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69, 667–687 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A Math. Gen. 26, 1493–1517 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Desrosiers, P., Forrester, P.J.: Relationships between \(\tau \)-functions and Fredholm determinant expressions for gap probabilities in random matrix theory. Nonlinearity 19, 1643–1656 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Evans, M.R.: Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics. J. Phys. A Math. Gen. 30, 5669–5685 (1997)

    Article  ADS  MATH  Google Scholar 

  24. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135, 217–239 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Fendley, P., Read, N.: Exact \(S\)-matrices for supersymmetric sigma models and the potts model. J. Phys. A Math. Gen. 35, 10675–10704 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Ferrari, P., Martin, J.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35, 807–832 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy–Widom distribution. J. Phys. A Math. Gen 38, L557–L561 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fouladvand, M.E., Jafarpour, F.: Multi-species asymmetric exclusion process in ordered sequential update. J. Phys. A Math. Gen. 32, 5845–5867 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Golinelli, O., Mallick, K.: The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics. J. Phys. A Math. Gen. 39, 12679–12705 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Gravner, J., Tracy, C., Widom, H.: Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102, 1085–1132 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gwa, L.-H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy burgers equation. Phys. Rev. A 46, 844–854 (1992a)

  32. Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin hamiltonian. Phys. Rev. Lett. 68, 725–728 (1992b)

  33. Houdré, C., Litherland, T.J.: On the longest increasing subsequence for finite and countable alphabets, pp. 185–212. Institute of Mathematical Statistics, Beachwood, OH (2009)

    Google Scholar 

  34. Houdré, C., Restrepo, R.: A probabilistic approach to the asymptotics of the length of the longest alternating subsequence. Electron. J. Comb. 17, R168 (2010)

    Google Scholar 

  35. Houdré, C., Talata, Z.: On the rate of approximation in finite-alphabet longest increasing subsequence problems. Ann. Appl. Prob. 22, 2539–2559 (2012)

    Article  MATH  Google Scholar 

  36. Houdré, C., Lember, J., Matzinger, H.: On the longest common increasing binary subsequence. C. R. Acad. Sci. Paris. Ser. I 343, 589–594 (2006)

    Article  MATH  Google Scholar 

  37. Imamura, T., Sasamoto, T.: Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition. J. Stat. Phys. 128, 799–846 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MATH  Google Scholar 

  39. Kandel, D., Domany, E., Nienhuis, B.: A six-vertex model as a diffusion problem: derivation of correlation functions. J. Phys. A Math. Gen. 23, L755–L762 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. Karimipour, V.: Multispecies asymmetric simple exclusion process and its relation to traffic flow. Phys. Rev. E 59, 205–212 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kim, D.: Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang-type growth model. Phys. Rev. E 52, 3512–3524 (1995)

    Article  ADS  Google Scholar 

  42. Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67, 1882–1885 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. Liggett, T.M.: Interacting particle systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  44. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1–25 (1968)

    Article  Google Scholar 

  45. Morin-Duchesne, A., Pearce, P.A., Rasmussen, J.: Fusion Hierarchies, \(T\)-Systems and \(Y\)-Systems of Logarithmic Minimal Models. Preprint, arXiv:1401.7750 (2014)

  46. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24, 745–758 (1987)

    MATH  MathSciNet  Google Scholar 

  47. Prolhac, S., Evans, M., Mallick, K.: The matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A Math. Theor. 42, 165004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. Sandow, S.: Partially asymmetric exclusion process with open boundaries. Phys. Rev. E 50, 2660–2667 (1994)

    Article  ADS  Google Scholar 

  49. Sandow, S., Schütz, G.: On \({U}_q[{SU}(2)]\)-symmetric driven diffusion. Europhys. Lett. 26, 7–12 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sasamoto, T.: One-dimensional partially asymmetric simple exclusion process with open boundaries: orthogonal polynomials approach. J. Phys. A Math. Gen. 32, 7109–7131 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A Math. Gen 38, L549–L556 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech. Theor. Exp. 2007, P07007 (2007)

    Article  MathSciNet  Google Scholar 

  53. Sasamoto, T.: Exact results for the \(1\)D asymmetric exclusion process and KPZ fluctuations. Eur. Phys. J. B. 64, 373–377 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)

    Article  ADS  MATH  Google Scholar 

  55. Schütz, G., Domany, E.: Phase transitions in an exactly soluble one-dimensional exclusion process. J. Stat. Phys. 72, 277–296 (1993)

    Article  ADS  MATH  Google Scholar 

  56. Spohn, H.: Large scale dynamics of interacting particles. Springer, New York (1991)

    Book  MATH  Google Scholar 

  57. Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Zinn-Justin, P.: Combinatorial point for fused loop models. Commun. Math. Phys. 272, 661–687 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to C. Arita, K. Mallick and K. Motegi for helpful discussions. Especially, C.M. would like to thank C. Arita, N. Crampe, E. Ragoucy, and M. Vanicat for valuable comments for improvement of this paper. The author also would like to thank N. Demni for suggesting interesting future works related to combinatorial problems. This work is partially supported by the Aihara Project, the FIRST program from JSPS, initiated by CSTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Matsui.

Appendices

Appendix 1: The \(U_q(sl_2)\) Algebra

The \(U_q(sl_2)\) algebra is generated by \(S^{\pm }\) and \(q^{S^z}\) which satisfy the following commutation relations:

$$\begin{aligned} q^{S^z} S^{\pm } q^{-S^z} = q^{\pm } S^{\pm }, \qquad [S^+,\, S^-] = \frac{q^{2S^z} - q^{-2S^z}}{q - q^{-1}}. \end{aligned}$$
(87)

As the Hopf algebra, the following comultiplication holds for the \(U_q(sl_2)\) generators \(X \in \{S^{\pm }, q^{S^z}\}\):

$$\begin{aligned} ({\varvec{1}} \otimes \Delta ) \circ \Delta (X) = (\Delta \otimes {\varvec{1}}) \circ \Delta (X). \end{aligned}$$
(88)

By choosing \(\Delta (S^{\pm }) = S^{\pm } \otimes q^{-S^z} + q^{S^z} \otimes S^{\pm }\) and defining \(\Delta ^{(N)}\) by

$$\begin{aligned} \Delta ^{(N)}&= (\underbrace{{\varvec{1}} \circ \cdots \circ {\varvec{1}}}_{N-2} \circ \Delta ) \cdots ({\varvec{1}} \circ \Delta ) \Delta , \nonumber \\&= \cdots \nonumber \\&= (\Delta \circ \underbrace{{\varvec{1}} \circ \cdots \circ {\varvec{1}}}_{N-2}) \cdots (\Delta \circ {\varvec{1}}) \Delta , \end{aligned}$$
(89)

we have the spacially extended generators:

$$\begin{aligned}&\Delta ^{(N)}(S^{\pm }) = \sum _{j=1}^N q^{S_1^z} \otimes \cdots \otimes q^{S_{j-1}^z} \otimes S^{\pm }_j \otimes q^{-S_{j+1}^z} \otimes \cdots \otimes q^{-S_N^z},\end{aligned}$$
(90)
$$\begin{aligned}&\Delta ^{(N)}(q^{S^z}) = q^{S_1^z} \otimes \cdots \otimes q^{S_N^z}. \end{aligned}$$
(91)

Appendix 2: Graphical Representations of the TL Algebra

The basis of the TL algebra is known to be described by the link patterns. The link pattern is made by connecting two distinct sites with non-crossing arches. Each of sites is identified with a space of the TL algebra. Link patterns with different shapes are orthogonal to each other, which form the basis of the TL algebra. On this basis, the identity operator just map the original spaces to themselves which is graphically represented as in the left figure of Fig. 8. On the other hand, the TL generator mixes two spaces and then its graphical representation is given by the right one of Fig. 8. Then the TL algebraic relations (10) are graphically given by Fig. 7.

Fig. 7
figure 7

Graphical representations of the algebraic relations (10). If a circle shows up, a weight \((q+q^{-1})\) is added

As an illustration, we show the action of \(e_2\) on the basis of link patterns in the case of \(N=6\) (Fig. 9).

Fig. 8
figure 8

Graphical representations of the identity operator and the TL generator

Fig. 9
figure 9

The action of \(e_2\) on the basis of link patterns with \(N=6\). Each shape can be topologically deformed. A weight \((q+q^{-1})\) is added coming from the first relation of (10)

Taking into consideration of the definitions (19) and (20), it is now naturally obtained that the generators \(e_i^{(2;1)}\) and \(e_i^{(2;2)}\) are graphically represented as in Fig. 10. The projection operator \(Y^{(2)}\) is denoted by a red circle.

Fig. 10
figure 10

The graphical representations of the three-dimensional fused TL generators \(e_i^{(2;1)}\) and \(e_i^{(2;2)}\). The projection operator \(Y^{(2)}\) is denoted by a red circle (Color figure online)

Appendix 3: \(SO(3)\) Birman–Murakami–Wenzl Algebra

Here we give algebraic relations between \(e_i^{(2;1)}\) and \(e_i^{(2;2)}\):

$$\begin{aligned} \left( e_i^{(2;2)}\right) ^2&= (q^2 + 1 + q^{-2}) e_i^{(2;2)},\end{aligned}$$
(92)
$$\begin{aligned} \left( e_i^{(2;1)}\right) ^2&= \frac{q^2 + q^{-2}}{q + q^{-1}} e_i^{(2;1)} + \frac{1}{q^2 + q^{-2}} e_i^{(2;2)},\end{aligned}$$
(93)
$$\begin{aligned} e_i^{(2;1)} e_i^{(2;2)}&= \frac{q^2 + 1 + q^{-2}}{q + q^{-1}} e_i^{(2;2)}, \end{aligned}$$
(94)

and

$$\begin{aligned} e_i^{(2;2)} e_{i+1}^{(2;2)} e_i^{(2;2)} = e_i^{(2;2)},\end{aligned}$$
(95)
$$\begin{aligned} e_i^{(2;1)} e_{i+1}^{(2;2)} e_i^{(2;1)} = e_{i+1}^{(2;1)} e_i^{(2;2)} e_{i+1}^{(2;1)},\end{aligned}$$
(96)
$$\begin{aligned} e_i^{(2;2)} e_{i+1}^{(2;1)} e_i^{(2;2)} = \tfrac{q^2 + 1 + q^{-2}}{q + q^{-1}} e_i^{(2;2)},\end{aligned}$$
(97)
$$\begin{aligned} e_i^{(2;1)} e_{i+1}^{(2;2)} e_i^{(2;2)} = e_{i+1}^{(2;1) e_i^{(2;2)}},\end{aligned}$$
(98)
$$\begin{aligned} e_i^{(2;1)} e_{i+1}^{(2;1)} e_i^{(2;2)} = \tfrac{q^2 + q^{-2}}{q + q^{-1}} e_{i+1}^{(2;1)} e_i^{(2;2)} + \tfrac{1}{(q + q^{-1})^2} e_i^{(2;2)}, \end{aligned}$$
(99)
$$\begin{aligned} e_i^{(2;1)} e_{i+1}^{(2;1)} e_i^{(2;1)}&- e_{i+1}^{(2;1)} e_i^{(2;1)} e_{i+1}^{(2;1)}\nonumber \\&= \tfrac{1}{(q + q^{-1})^2} e_{i+1}^{(2;1)} e_i^{(2;2)} + \tfrac{1}{(q + q^{-1})^2} e_i^{(2;2)} e_{i+1}^{(2;1)} \nonumber \\&\quad + \tfrac{1}{(q + q^{-1})^2} e_i^{(2;1)} - \tfrac{1}{(q + q^{-1})^3} e_i^{(2;2)} - \tfrac{1}{(q + q^{-2})^2} e_i^{(2;1)} e_{i+1}^{(2;2)} \nonumber \\&\quad - \tfrac{1}{(q + q^{-1})^2} e_{i+1}^{(2;2)} e_i^{(2;1)} - \tfrac{1}{(q + q^{-1})^3} e_{i+1}^{(2;2)} + \tfrac{1}{(q + q^{-1})^2} e_{i+1}^{(2;1)}. \end{aligned}$$
(100)

These are known as the \(SO(3)\) BMW algebra. This kind of algebraic relations have not been found yet for the fused TL generators with \(\ell \ge 3\).

Appendix 4: Matrix Elements of the \(e_i^{(\ell ;r)}\) Generator

In this appendix, we compute explicit matrix elements of the \(e_i^{(\ell ;r)}\) generator. First of all, we give \(e_i^{(\ell ;r)}\) in terms of two-dimensional representations. Let us introduce the following vector notations:

$$\begin{aligned} |m_1,\ldots ,m_r \rangle \rangle = |\underset{1}{0}\, \ldots \, \underset{m_1}{1}\, \underset{\ldots }{\ldots }\, \underset{m_r}{1}\, \ldots \, \underset{2r}{0} \rangle , \end{aligned}$$
(101)

with the definitions (1) and (8). Then, \(e_i^{(\ell ;r)}\) is expressed as

$$\begin{aligned} e_i^{(\ell ;r)}&= \underbrace{\varvec{1} \otimes \cdots \otimes \varvec{1}}_{\ell - r} \otimes \sum _{\begin{array}{c} 1 \le m_1 < \cdots < m_r \le 2r \\ 1 \le n_1 < \cdots < n_r \le 2r \end{array}} q^{\sum _{k=1}^r \Theta (\ell -m_k)-\frac{1}{2}} q^{\sum _{k=1}^r \Theta (\ell -n_k)-\frac{1}{2}}\nonumber \\&\quad \cdot \prod _{k=1}^r (1 - \delta _{m_{r-k+1}, 2r-m_k+1})\, |m_1 \ldots m_r \rangle \rangle \langle \langle n_1 \ldots n_r| \otimes \underbrace{\varvec{1} \otimes \cdots \otimes \varvec{1}}_{\ell - r}, \end{aligned}$$
(102)

where

$$\begin{aligned} \delta _{ab} = {\left\{ \begin{array}{ll} 1 &{} a = b \\ 0 &{} a\ne b. \end{array}\right. } \end{aligned}$$
(103)

The \((\ell +1)\)-dimensional representation of this generator is obtained by using the two-dimensional vector basis of the \(U_q(sl_2)\) algebra. Since the \(s\)-particle state is expressed in terms of the notation (101) by

$$\begin{aligned} |s \rangle _\mathrm{norm}&= \begin{bmatrix} \ell \\ s \end{bmatrix}^{-1} q^{-\frac{s}{2} (\ell +1)} \sum _{1 \le n_1 < \cdots < n_s \le \ell } q^{\sum _{k=1}^s n_k} |n_1 \ldots n_s \rangle \rangle ,\end{aligned}$$
(104)
$$\begin{aligned} \langle s|&= q^{-\frac{s}{2} (\ell +1)} \sum _{1 \le n_1 < \cdots < n_s \le \ell } q^{\sum _{k=1}^s n_k} \langle \langle n_1 \ldots n_s|, \end{aligned}$$
(105)

we have

$$\begin{aligned}&\langle r_L| \otimes \langle s_L|\; e_i^{(\ell ;r)}\; |r_R \rangle \otimes |s_R \rangle \nonumber \\&\!=\! \begin{bmatrix} \ell \\ r_R \end{bmatrix}^{-1} \begin{bmatrix} \ell \\ s_R \end{bmatrix}^{-1} q^{-\frac{1}{2}(r_L + s_L + r_R + s_R) (\ell +1)} \sum \limits _{\begin{array}{c} 1 \le m_1<\cdots <m_{r_L} \le \ell \\ 1 \le n_1<\cdots <n_{s_L} \le \ell \\ 1 \le m^{\prime }_1<\cdots <m^{\prime }_{r_R} \le \ell \\ 1 \le n^{\prime }_1<\cdots <n^{\prime }_{s_R} \le \ell \end{array}} q^{\sum _{k=1}^{r_L} m_k} q^{\sum _{j=1}^{s_L} n_j} q^{\sum _{k^{\prime }\!=\!1}^{r_R} m^{\prime }_{k^{\prime }}} q^{\sum _{j^{\prime }=1}^{s_R} n^{\prime }_{j^{\prime }}}\nonumber \\&\,\,\cdot \langle \langle m_1 \ldots m_{r_L}| \otimes \langle \langle n_1 \ldots n_{s_L}|\ e_i^{(\ell ;r)} \;|m_1^{\prime } \ldots m_{r_R}^{\prime } \rangle \rangle \otimes |n_1^{\prime } \ldots n_{s_R}^{\prime } \rangle \rangle . \end{aligned}$$
(106)

Here we abbreviated the subscription “norm”. If one sets \(m_j\) and \(n_j\) in (102) by

$$\begin{aligned}&\varvec{\alpha } = \{m_1+\ell -r,\ldots ,m_r+\ell -r\} = \{a_1,\ldots ,a_r\},\end{aligned}$$
(107)
$$\begin{aligned}&\varvec{\beta } = \{n_1+\ell -r,\ldots ,n_r+\ell -r\} = \{b_1,\ldots ,b_r\}, \end{aligned}$$
(108)

(106) has a non-zero value only when \(\varvec{\alpha } \in \{m_1, \ldots , m_{r_L}, n_1+\ell , \ldots , n_{s_L}+\ell \}\) and \(\varvec{\beta } \in \{m^{\prime }_1, \ldots , m^{\prime }_{r_R}, n^{\prime }_1+\ell , \ldots , n^{\prime }_{s_R}+\ell \}\). We also introduce the following notations:

$$\begin{aligned}&{\bar{\varvec{\alpha }}} = \{m_1, \ldots , m_{r_L}, n_1+\ell , \ldots , n_{s_L}+\ell \}\; \backslash \; \varvec{\alpha } = \{\bar{a}_1, \ldots , \bar{a}_{r_L+s_L-r}\},\end{aligned}$$
(109)
$$\begin{aligned}&{\bar{\varvec{\beta }}} = \{m^{\prime }_1, \ldots , m^{\prime }_{r_R}, n^{\prime }_1+\ell , \ldots , n^{\prime }_{s_R}+\ell \}\; \backslash \; \varvec{\beta } = \{\bar{b}_1, \ldots , \bar{b}_{r_R+s_R-r}\}. \end{aligned}$$
(110)

Taking into account the following relations:

$$\begin{aligned} \sum _{k=1}^{r_L} m_k&= \sum _{k=1}^{r_L - \mathrm{card}(a_k \le \ell )} \bar{a}_k + \sum _{k=1}^{\mathrm{card}(a_k \le \ell )} a_k,\end{aligned}$$
(111)
$$\begin{aligned} \sum _{j=1}^{s_L} n_j&= \sum _{j=\mathrm{card}(a_k \le \ell )+1}^r (a_j-\ell ) + \sum _{j=\mathrm{card}(a_k > \ell )+1}^{r_L + s_L - r} (\bar{a}_j - \ell ),\end{aligned}$$
(112)
$$\begin{aligned} \sum _{k^{\prime }=1}^{r_R} m^{\prime }_{k^{\prime }}&= \sum _{k=1}^{r_R - \mathrm{card}(b_{j} \le \ell )} \bar{b}_{k} + \sum _{k=1}^{\mathrm{card}(b_{j} \le \ell )+1} b_{k},\end{aligned}$$
(113)
$$\begin{aligned} \sum _{j^{\prime }=1}^{s_R} n^{\prime }_{j^{\prime }}&= \sum _{j=\mathrm{card}(b_{j} > \ell )+1}^r (b_{j}-\ell ) + \sum _{j=\mathrm{card}(b_{j} > \ell )+1}^{r_R + s_R - r} (\bar{b}_{j} - \ell ), \end{aligned}$$
(114)

we have

$$\begin{aligned}&\langle r_L| \otimes \langle s_L|\; e_i^{(\ell ;r)}\; |r_R \rangle \otimes |s_R \rangle \nonumber \\&= \begin{bmatrix} \ell \\ r_R \end{bmatrix}^{-1} \begin{bmatrix} \ell \\ s_R \end{bmatrix}^{-1} \delta _{r_L+s_L, r_R+s_R} q^{-\frac{1}{2} (r_L+s_L+r_R+s_R)(\ell +1)} q^{\sum _{k=1}^r \Theta (\ell -m_k)-\frac{1}{2}} q^{\sum _{k=1}^r \Theta (\ell -n_k)-\frac{1}{2}} \nonumber \\&\quad \cdot \sum \limits _{\begin{array}{c} \ell -r+1 \le a_1 < \cdots < a_r \le \ell +r\\ \ell -r+1 \le b_1 < \cdots < b_r \le \ell +r \end{array}} (-1)^{\mathrm{card}(m_j \ne n_k)} \prod _{k=1}^r (1 - \delta _{a_{r-k+1}-\ell +r, \ell +r-a_k+1}) (1 - \delta _{b_{r-k+1}-\ell +r, \ell +r-b_k+1}) \nonumber \\&\quad \cdot \sum \limits _{\begin{array}{c} 1 \le \bar{a}_1 < \cdots < \bar{a}_{r_L - \mathrm{card}(a_k \le \ell )} \le \ell -r\\ \ell +r+1 \le \bar{a}_{r_L - \mathrm{card}(a_k \le \ell )+1 < \cdots < \bar{a}_{r_L+s_L-r} \le 2\ell } \end{array}} q^{-\sum _{k=1}^{r_L+s_L-r} \bar{a}_k} \sum \limits _{\begin{array}{c} 1 \le \bar{b}_1 < \cdots < \bar{b}_{r_R - \mathrm{card}(b_k \le \ell )} \le \ell -r\\ \ell +r+1 \le \bar{b}_{r_R - \mathrm{card}(b_k \le \ell )+1 < \cdots < \bar{b}_{r_L+s_L-r} \le 2\ell } \end{array}} q^{-\sum _{k=1}^{r_R+s_R-r} \bar{b}_k} \nonumber \\&\quad \cdot \prod _{k=1}^{r_L+s_L-r} \delta _{\bar{a}_k\bar{b}_k} \cdot q^{-\ell \cdot \mathrm{card}(a_k>\ell )} q^{-\ell \cdot \mathrm{card}(\bar{a}_k>\ell )} q^{-\ell \cdot \mathrm{card}(b_k>\ell )} q^{-\ell \cdot \mathrm{card}(\bar{b}_k>\ell )}. \end{aligned}$$
(115)

Especially, non-zero elements of \(e_i^{(\ell ;1)}\) are obtained from explicit calculation as

$$\begin{aligned}&\langle r| \otimes \langle s|\; e_i^{(\ell ;1)} \;|\; r \rangle \otimes |s \rangle =q^{-r+s+\ell +1} \frac{[r] [\ell -s]}{[\ell ]^2} + q^{-r+s-\ell -1} \frac{[\ell -r] [s]}{[\ell ]^2} \end{aligned}$$
(116)
$$\begin{aligned}&\quad \langle r+1| \otimes \langle s-1|\; e_i^{(\ell ;1)} \;|r \rangle \otimes |s \rangle = -q^{-r+s-1} \frac{[\ell -r] [s]}{[\ell ^2]} \end{aligned}$$
(117)
$$\begin{aligned}&\langle r-1| \otimes \langle s+1|\; e_i^{(\ell ;1)} \;|r \rangle \otimes |s \rangle =-q^{-r+s+1} \frac{[r] [\ell -s]}{[\ell ^2]} \end{aligned}$$
(118)

\(r\) and \(s\) run from \(0\) to \(\ell \) for (116), while they run from \(1\) to \(\ell -1\) for (117) and (118). The expression (115) naturally leads to the particle-conservation law given by \(r_L + s_L = r_R + s_R\).

Appendix 5: Derivation of the Norms

In derivation of the norms of an \(n\)-particle steady state of the \((\ell +1)\)-state ASEP, we use the commutation relation of the \(U_q(sl_2)\) generators:

$$\begin{aligned}{}[\Delta (S^+),\, \Delta (S^-)] = \frac{\Delta \left( q^{2S^z}\right) - \Delta \left( q^{-2S^z}\right) }{q - q^{-1}}. \end{aligned}$$
(119)

This relation leads to

$$\begin{aligned} (\Delta (S^+))^n (\Delta (S^-))^n&= (\Delta (S^+))^{n-1} \left\{ \Delta (S^-) \Delta (S^+) + \frac{\Delta (q^{2S^z}) - \Delta (q^{-2S^z})}{q - q^{-1}} \right\} (\Delta (S^-))^{n-1} \nonumber \\&= (\Delta (S^+))^{n-1} (\Delta (S^-))^n \Delta (S^+)\nonumber \\&\quad \!+\! (\Delta (S^+))^{n-1} (\Delta (S^-))^{n-1} \sum _{j = 1}^n \frac{q^{-2(n-j)} \Delta (q^{2S^z}) \!-\! q^{2(n-j)} \Delta (q^{-2S^z})}{q \!-\! q^{-1}}. \end{aligned}$$
(120)

Using the fact that \(\Delta (S^+) |0\rangle = 0\) and \(\Delta (q^{\pm 2S^z}) | 0\rangle = q^{\pm N}\), we obtain the following recursion relation:

$$\begin{aligned}&\langle 0| (\Delta ^{(\ell N)}(S^+))^n (\Delta ^{(\ell N)}(S^-))^n |0 \rangle \nonumber \\&\quad = \sum _{j = 1}^n \frac{q^{\ell N-2(n-j)} - q^{-\ell N+2(n-j)}}{q - q^{-1}} \langle 0| (\Delta ^{(\ell N)}(S^+))^{n-1} (\Delta ^{(\ell N)}(S^-))^{n-1} |0 \rangle . \end{aligned}$$
(121)

Taking into account that the initial condition:

$$\begin{aligned} \langle 0| \Delta ^{(\ell N)}(S^+) \Delta ^{(\ell N)}(S^-) |0 \rangle = \frac{q^{\ell N} - q^{-\ell N}}{q - q^{-1}}, \end{aligned}$$
(122)

we obtain the expression (54) for the norm.

Appendix 6: Correlation Functions

We introduce a particle-counting operator defined on a two-dimensional vector space:

$$\begin{aligned} n_j = S_j^+ S_j^- = \begin{pmatrix} 0 &{} \\ &{} 1 \end{pmatrix}_j, \qquad 1 - n_j = S_j^- S_j^+ = \begin{pmatrix} 1 &{} \\ &{} 0 \end{pmatrix}_j. \end{aligned}$$
(123)

In the case of the two-state ASEP, important physical quantities such as particle densities and particle currents are expressed by \(n_j\).

For instance, an \(l\)-point correlation function of the two-state ASEP is written by means of particle-counting operators in the following way:

$$\begin{aligned} \langle n|U n_{x_1} n_{x_2} \ldots n_{x_l} U^{-1}|n \rangle _\mathrm{norm} = \langle n|n_{x_1} n_{x_2} \ldots n_{x_l}|n \rangle _\mathrm{norm}. \end{aligned}$$
(124)

Useful formulae have been obtained in [49]: The one-point correlation functions is given by

$$\begin{aligned} \langle n|U^{-1} n_x U|n \rangle = \langle n| n_x |n \rangle = \begin{bmatrix} N \\ n \end{bmatrix}^{-1} \sum _{k=0}^{n-1} (-1)^{n-k+1} q^{-(n-k) (N+1-2x)} \begin{bmatrix} N \\ k \end{bmatrix}, \end{aligned}$$
(125)

which was derived using the following relations:

$$\begin{aligned} S^+_x |n\rangle \!=\! q^{(-N-1+2x)/2} (1-n_x) |n-1 \rangle , \qquad \langle n| S^-_x = q^{(-N-1+2x)/2} \langle n-1| (1-n_x). \end{aligned}$$
(126)

The relations (126) lead to a recursion relation for an \(l\)-point correlation function with respect to \(n\):

$$\begin{aligned} \langle n | n_{x_1} \ldots n_{x_l} | n \rangle _\mathrm{norm} = \frac{[n] q^{- N - 1 + 2x}}{[N - n + 1]} \langle n-1 | n_{x_1} \ldots n_{x_l-1} (1 - n_{x_l}) | n-1 \rangle _\mathrm{norm}. \end{aligned}$$
(127)

In contrast to the recursion relation (127), by which one needs to compute correlation functions in basis of different particle-sectors, we found another recursion relation which does not change the number of particles:

Proposition 10

An \(l\)-point function is decomposed into one-point functions:

$$\begin{aligned} \langle n| n_{x_1} n_{x_2} \cdots n_{x_{l}} | n\rangle _\mathrm{norm} = \sum _{j=1}^{l} \prod \limits _{\begin{array}{c} k=1 \\ k\ne j \end{array}}^{\ell } \frac{q^{(x_k - x_j)}}{q^{(x_k - x_j)} - q^{-(x_k - x_j)}} \cdot \langle n| n_{x_j} |n \rangle _\mathrm{norm}. \end{aligned}$$
(128)

Proof

The proof is given by an induction on \(l\). Before starting the proof, let us remark the following lemma: \(\square \)

Lemma 3

A two-point function is decomposed into one-point functions:

$$\begin{aligned} (q^{x_2-x_1}-q^{-(x_2-x_1)}) \cdot \langle n| n_{x_1} n_{x_2} |n \rangle _\mathrm{norm} = q^{x_2-x_1} \cdot \langle n| n_{x_1} |n \rangle _\mathrm{norm} - q^{-(x_2-x_1)} \cdot \langle n| n_{x_2} |n \rangle _\mathrm{norm}. \end{aligned}$$
(129)

Proof

This lemma can be proved by considering two expressions of the following function;

$$\begin{aligned} \langle n-1| (1 - n_{x_1}) (1 - n_{x_2}) |n-1 \rangle _\mathrm{norm}. \end{aligned}$$
(130)

First applying the formula (127) to the operator \((1-n_{x_2})\), one obtains

$$\begin{aligned}&\langle n-1| ( 1 - n_{x_1} )( 1 - n_{x_2} ) |n-1 \rangle _\mathrm{norm} \nonumber \\&\quad = \langle n-1| (1 - n_{x_2}) |n-1 \rangle _\mathrm{norm} - \langle n-1| n_{x_1} (1 - n_{x_2}) |n-1 \rangle _\mathrm{norm} \nonumber \\&\quad = \frac{[N-n+1]}{[n] q^{-N-1+2x_2}} \cdot \langle n| (n_{x_2} - n_{x_1} n_{x_2}) |n \rangle _\mathrm{norm}, \end{aligned}$$
(131)

and then applying to the operator \((1-n_{x_1})\), one has

$$\begin{aligned}&\langle n-1| ( 1 - n_{x_1} )( 1 - n_{x_2} ) |n-1 \rangle _\mathrm{norm} \nonumber \\&\quad = \langle n-1| (1 - n_{x_1}) |n-1 \rangle _\mathrm{norm} - \langle n-1| n_{x_2} (1 - n_{x_1}) |n-1 \rangle _\mathrm{norm} \nonumber \\&\quad = \frac{[N-n+1]}{[n] q^{-N-1+2x_1}} \cdot \langle n| (n_{x_1} - n_{x_1} n_{x_2}) |n \rangle _\mathrm{norm}. \end{aligned}$$
(132)

From (131) and (132), decomposition of two-point functions (129) is obtained. \(\square \)

Assume the relation (128) holds for an \(l\)-point function. Then an \((l + 1)\)-point function is evaluated as

$$\begin{aligned} \langle n| n_{x_1} n_{x_2} \cdots n_{x_{l}} n_{x_{l + 1}} |n \rangle _\mathrm{norm}&= \sum _{j=1}^{l} \prod \limits _{\begin{array}{c} k=1 \\ k\ne j \end{array}}^{l} \frac{q^{x_k - x_j}}{q^{x_k - x_j} - q^{-(x_k - x_j)}} \cdot \langle n| n_{n_{x_j}} n_{x_{l+1}} |n \rangle _\mathrm{norm}. \end{aligned}$$
(133)

Using the decomposition formula of two-point functions into one-point functions (129) to the right-hand side, we obtain the relation (128) for an \((l+1)\)-point function. \(\square \)

Substituting the expression for the one-point function (125) into (128), one obtains the expression for the \(l\)-point function.

Appendix 7: Currents in Terms of the Particle-Counting Operators

Here we give useful expressions for the seven types of expectation values in (74) in terms of particle-counting operators.

$$\begin{aligned}&\langle 2;n| \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x} \begin{pmatrix} 1&{}&{} \\ &{}0&{} \\ &{}&{}0 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm} \nonumber \\&= -\, \tfrac{q^{-5} (q+q^{-1})}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q^{-3} (q+q^{-1})}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm} \nonumber \\& - \tfrac{q^{-1} (q+q^{-1})}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q (q+q^{-1})}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm},\nonumber \\&\langle 2;n| \begin{pmatrix} 0&{}&{} \\ &{}0&{} \\ &{}&{}1 \end{pmatrix}_{x} \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm} \nonumber \\&= -\,\tfrac{q (q+q^{-1})}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q^{-1} (q+q^{-1})}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{q^{-3} (q+q^{-1})}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q^{-5} (q+q^{-1})}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm},\nonumber \\&\langle 2;n| \begin{pmatrix} 0&{}&{} \\ &{}0&{} \\ &{}&{}1 \end{pmatrix}_{x} \begin{pmatrix} 1&{}&{} \\ &{}0&{} \\ &{}&{}0 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm} \nonumber \\&= -\, \tfrac{q^{-4}}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q^{-4}}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{q^{-4}}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q^{-4}}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm},\nonumber \\&\langle 2;n| \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x} \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm} \nonumber \\&= -\,\tfrac{(q+q^{-1})^2}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{(q+q^{-1})^2}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{(q+q^{-1})^2}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{(q+q^{-1})^2}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm},\nonumber \\&\langle 2;n| \begin{pmatrix} 1&{}&{} \\ &{}0&{} \\ &{}&{}0 \end{pmatrix}_{x} \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm} \nonumber \\&= -\,\tfrac{q^{-1} (q+q^{-1})}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q (q+q^{-1})}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{q^3 (q+q^{-1})}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q^5 (q+q^{-1})}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm},\nonumber \\&\langle 2;n| \begin{pmatrix} 0&{}&{} \\ &{}1&{} \\ &{}&{}0 \end{pmatrix}_{x} \begin{pmatrix} 0&{}&{} \\ &{}0&{} \\ &{}&{}1 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm}\nonumber \\&= -\, \tfrac{q^5 (q+q^{-1})}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q^3 (q+q^{-1})}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{q (q+q^{-1})}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q^{-1} (q+q^{-1})}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm}, \nonumber \\&\langle 2;n| \begin{pmatrix} 1&{}&{} \\ &{}0&{} \\ &{}&{}0 \end{pmatrix}_{x} \begin{pmatrix} 0&{}&{} \\ &{}0&{} \\ &{}&{}1 \end{pmatrix}_{x+1} |2;n \rangle _\mathrm{norm}\nonumber \\&= -\, \tfrac{q^4}{(q-q^{-1}) (q^2-q^{-2}) (q^3-q^{-3})} \langle n| n_{2x-1} |n \rangle _\mathrm{norm} - \tfrac{q^4}{(q^{-1}-q) (q-q^{-1}) (q^2-q^{-2})} \langle n| n_{2x} |n \rangle _\mathrm{norm}\nonumber \\& - \tfrac{q^4}{(q^{-2}-q^2) (q^{-1}-q) (q-q^{-1})} \langle n| n_{2x+1} |n \rangle _\mathrm{norm} - \tfrac{q^4}{(q^{-3}-q^3) (q^{-2}-q^2) (q^{-1}-q)} \langle n| n_{2x+2} |n \rangle _\mathrm{norm}. \end{aligned}$$
(134)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, C. Multi-state Asymmetric Simple Exclusion Processes. J Stat Phys 158, 158–191 (2015). https://doi.org/10.1007/s10955-014-1121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1121-9

Keywords

Navigation