Skip to main content
Log in

Integral Formulas for the Asymmetric Simple Exclusion Process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2011

Abstract

In this paper we obtain general integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice \({\mathbb{Z}}\) with nearest neighbor hopping rates p to the right and q = 1−p to the left. For the most part we consider an N-particle system but for certain of these formulas we can take the \(N\to\infty\) limit. First we obtain, for the N-particle system, a formula for the probability of a configuration at time t, given the initial configuration. For this we use Bethe Ansatz ideas to solve the master equation, extending a result of Schütz for the case N = 2. The main results of the paper, derived from this, are integral formulas for the probability, for given initial configuration, that the m th left-most particle is at x at time t. In one of these formulas we can take the \(N\to\infty\) limit, and it gives the probability for an infinite system where the initial configuration is bounded on one side. For the special case of the totally asymmetric simple exclusion process (TASEP) our formulas reduce to the known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcaraz, F.C., Droz, M., Henkel, M., Rittenberg, V.: Reaction-diffusion processes, critical dynamics, and quantum chains. Ann. Phys. 230, 250–302 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Andréief, C.: Note sur une relation les intégrales définies des produits des fonctions, Mém. de la Soc. Sci., Bordeaux 2, 1–14 (1883)

    Google Scholar 

  3. Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence in a random permutation. J. Am. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gwa, L.-H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46, 844–854 (1992)

    Article  ADS  Google Scholar 

  5. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probability Surveys 3, 206–229 (2006)

    Article  MathSciNet  Google Scholar 

  6. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Liggett, T.M.: Interacting Particle Systems. [Reprint of the 1985 original]. Springer-Verlag, Berlin (2005)

    Google Scholar 

  9. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer-Verlag, Berlin (1999)

    MATH  Google Scholar 

  10. Liggett, T.M.: Private communication, April 17, 2007

  11. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Springer-Verlag, Berlin (1964)

    MATH  Google Scholar 

  12. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In and Out of Equilibrium, Progress in Probability 51, 185–204 (2000)

    Google Scholar 

  13. Rákos, A., Schütz, G.M.: Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process. J. Stat. Phys. 118, 511–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Schilling, A.: Private communication, Apr. 6 2007

  16. Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys 88, 427–445 (1997)

    Article  MATH  ADS  Google Scholar 

  17. Soshnikov, A.: Determinantal random fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Spohn, H.: Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Physica A 369, 71–99 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sutherland, B.: Beautiful Models: 70 Years of Exactly Solvable Quantum Many-Body Problems Singapore: World Scientific, 2004

  21. Yang, C.N., Yang, C.P.: One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe’s hypothesis for the ground state in a finite system. Phys. Rev. 150, 321–327 (1966)

    Article  ADS  Google Scholar 

  22. Yau, H.-T.: \((log t)^{2/3}\) law of the two dimensional asymmetric simple exclusion process. Ann. Math. 159, 377–405 (2004)

    Article  MATH  Google Scholar 

  23. Zeilberger, D.: Private communication, Feb. 14 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Widom.

Additional information

Communicated by H. Spohn

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-011-1249-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, C.A., Widom, H. Integral Formulas for the Asymmetric Simple Exclusion Process. Commun. Math. Phys. 279, 815–844 (2008). https://doi.org/10.1007/s00220-008-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0443-3

Keywords

Navigation