Skip to main content
Log in

A Fredholm Determinant Representation in ASEP

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In previous work (Tracy and Widom in Commun. Math. Phys. 279:815–844, 2008) the authors found integral formulas for probabilities in the asymmetric simple exclusion process (ASEP) on the integer lattice ℤ. The dynamics are uniquely determined once the initial state is specified. In this note we restrict our attention to the case of step initial condition with particles at the positive integers ℤ+ and consider the distribution function for the mth particle from the left. In Tracy and Widom (Commun. Math. Phys. 279:815–844, 2008) an infinite series of multiple integrals was derived for the distribution. In this note we show that the series can be summed to give a single integral whose integrand involves a Fredholm determinant. We use this determinant representation to derive (non-rigorously, at this writing) a scaling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balázs, M., Seppäläinen, T.: Order of current variance and diffusivity in the asymmetric simple exclusion process. Preprint, arXiv:0608400 (2006)

  2. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (2005). (Reprint of the 1985 original)

    MATH  Google Scholar 

  4. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    MATH  Google Scholar 

  5. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  6. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In and out of equilibrium. Prog. Probab. 51, 185–204 (2000)

    Google Scholar 

  7. Quastel, J., Valkó, B.: t 1/3 Superdiffusivity of finite-range asymmetric exclusion processes on Z. Commun. Math. Phys. 273, 379–394 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)

    Article  ADS  MATH  Google Scholar 

  9. Seppäläinen, T.: Directed random growth models on the plane. Preprint, arXiv:0708.2721 (2007)

  10. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spohn, H.: Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Physica A 369, 71–99 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Tracy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, C.A., Widom, H. A Fredholm Determinant Representation in ASEP. J Stat Phys 132, 291–300 (2008). https://doi.org/10.1007/s10955-008-9562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9562-7

Keywords

Navigation