Skip to main content
Log in

Magnetism and the Weiss Exchange Field-A Theoretical Analysis Motivated by Recent Experiments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The huge spin precession frequency observed in recent experiments with spin-polarized beams of hot electrons shot through magnetized films is interpreted as being caused by Zeeman coupling of the electron spins to the so-called Weiss exchange field in the film. The microscopic origin of exchange interactions and of large mean exchange fields, leading to different types of magnetic order, is elucidated. A microscopic derivation of the equations of motion of the Weiss exchange field is presented. Novel proofs of the existence of phase transitions in quantum XY-models and antiferromagnets, based on an analysis of the statistical distribution of the exchange field, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Pauli, Über Gasentartung und Paramagnetismus. Z. Physik 41:81 (1927).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, New approach to the theory of superexchange interactions. Phys. Rev. 115:2–13 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. N. Datta, R. Fernández and J. Fröhlich, Effective Hamiltonians and phase diagrams for tight-binding models. J. Stat. Phys. 96:545–611 (1999).

    Article  MATH  Google Scholar 

  4. F. Dyson, E. H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and non-isotropic interactions. J. Stat. Phys. 18:335 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Fröhlich, B. Simon and T. Spencer, Infrared Bounds, Phase Transitions And Continuous symmetry breaking. Commun. Math. Phys. 50:79 (1976).

    Article  ADS  Google Scholar 

  6. N. D. Mermin, and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17:1133–36 (1966).

    Article  ADS  Google Scholar 

  7. W. Heisenberg. Z. Physik 49:619 (1928). F. Bloch. Z. Physik 61:206 (1930). E. C. Stoner. Proc. R. Soc. A165:372 (1938). F. J. Dyson, General Theory of Spin-Wave Interactions. Phys. Rev. 102:1217–1230 (1956). F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet. Phys. Rev. 102:1230–1244 (1956). L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics Volume 9, Statistical Physics, Part 2, by E. M. Lifshitz and L. P. Pitajewski, London: Pergamon 1981.

    Google Scholar 

  8. E. Brezin, J. C. Le Guillou and J. Zinn-Justin, Field Theoretical Approach To Critical Phenomena, in: Phase Transitions and Critical Phenomena, C. Domb and M. S. Green (Eds.) Volume 6, 125–247, Academic PressLondon: 1976. D. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena, a.o.: McGraw-Hill New York, 1978.

  9. A. Mielke, and H. Tasaki, Ferromagnetism in the Hubbard model. Commun. Math. Phys. 158:341–71 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. H. Tasaki, Ferromagnetism in the Hubbard model: A constructive approach. Commun. Math. Phys. 242:445–72 (2003).

    MATH  MathSciNet  ADS  Google Scholar 

  11. J. Fröhlich, D. Ueltschi, Hund's Rule and Metallic Ferromagnetism. J. Stat. Phys. 118:973–996 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. W. Weber, S. Riesen and H. C. Siegmann, Magnetization Precession by Hot Spin Injection, Science. 291:1015 (2001) and W. Weber, S. Riesen and H. C. Siegmann, Transmission of Electron Beams Through Thin Magnetic Films, in: Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena (Lecture Notes in Physics 580), K. Baberschke, M. Donath and W. Nolting (Eds.), Berlin, Heidelberg, Springer-Verlag New York: 2001.

  13. D. Oberli, The ferromagnetic spin filter, PhD thesis ETH Zürich, Nr. 12933, (1998).

  14. J. Fröhlich, U. M. Studer and E. Thiran, Quantum theory of large systems of nonrelativistic matter, in: Fluctuating geometries in statistical mechanics and field theory (Les Houches 1994), F. David, P. Ginsparg, and J. Zinn-Justin (Eds.), Elsevier 1996, [arXiv:cond-mat/9508062].

  15. E. Fradkin, Field theories of condensed matter systems, Redwood City, a.o.: Addison-Wesley California, 1994.

  16. J. Reuteler, QM particles scattering off a dynamical target, and decoherence, ETH-diploma thesis, spring 2005.

  17. T. Chen, J. Fröhlich and M. Seifert. Renormalization group methods: Landau-Fermi liquid and BCS superconductor, in: Fluctuating geometries in statistical mechanics and field theory, F. David, P. Ginsparg, and J. Zinn-Justin (Eds.), Elsevier 1996, [arXiv:cond-mat/9508063].

  18. M. Azam, L. Ferrari, J. Fröhlich, to appear.

  19. H. Leutwyler, Nonrelativistic effective Lagrangians. Phys. Rev. D 49:3033 (1994), [arXiv:hep-ph/9311264].

    Google Scholar 

  20. J. Fröhlich, R. Israel, E.H. Lieb, B. Simon, Phase Transitions and Reflection Positivity I. General Theory and Long Range Lattice Models. Commun. Math. Phys. 62:1–34, (1978).

    Article  ADS  Google Scholar 

  21. J. Fröhlich, Mathematical Physics of Phase Transitions and Symmetry Breaking, Bulletin of the American Mathematical Society. 84:165–193 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  22. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff P. Eitenne, G. Creuzet, A. Friederich and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61:2472 (1988). P. C. van Son, H. van Kempen and P. Wyder, Boundary Resistance of the Ferromagnetic-Nonferromagnetic Metal Interface. Phys. Rev. Lett. 58:2271 (1987).

  23. Y. Tserkovnyak, A. Brataas and G. E. W. Bauer, Enhanced Gilbert Damping in Thin Ferromagnetic Films. Phys. Rev. Lett. 88:117601 (2002).

    Article  ADS  Google Scholar 

  24. L. Berger, Interaction of electrons with spin waves in the bulk and in multilayers. J. Appl. Phys. 91:6795 (2002).

    Article  ADS  Google Scholar 

  25. I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph and R. A. Buhrman, Time-Domain Measurements of Nanomagnet Dynamics Driven by Spin-Transfer Torques. Science 307:228 (2005).

    Article  ADS  Google Scholar 

  26. W. H. Rippard and R. A. Buhrman, Spin-Dependent Hot Electron Transport in Co/Cu Thin Films. Phys. Rev. Lett. 84:971 (2000).

    Article  ADS  Google Scholar 

  27. D. Ruelle, Statistical mechanics: rigorous results, Singapore: World Scientific, 1999.

  28. L. Birke and J. Fröhlich, KMS, ETC. Rev. Math. Phys. 14:829–872 (2002), [arXiv: math-ph/ 0204023].

  29. H. Chi and A. D. S. Nagi, Spin-wave velocity and specific heat of the Hubbard model at half filling with a path-integral approach, Phys. Rev. B46:8573 (1992).

    ADS  Google Scholar 

  30. V. Bach, E. H. Lieb, and M. V. Travaglia, Ferromagnetism of the Low-Density Hubbard Model in the Hartree-Fock Approximation, [arXiv:cond-mat/0506695]. D. Vollhardt, N. Blümer, K. Held, and M. Kollar, Metallic Ferromagnetism - An Electronic Correlation Phenomenon, in: Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena (Lecture Notes in Physics 580), K. Baberschke, M. Donath and W. Nolting (Eds.), Berlin, Heidelberg, Springer-Verlag New York: 2001.

  31. J. Fröhlich and T. Spencer, Phase transitions in statistical mechanics and quantum field theory, in: New Developments in Quantum Field Theory and Statistical Mechanics; M. Lévy, and P. Mitter (Eds.), London: Plenum New York, 1977.

  32. E. H. Lieb, The Classical Limit of Quantum Spin Systems. Commun. Math. Phys. 31:327–340 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J. Derezinski, V. Jaksic and C. Pillet, Perturbation theory of W*-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15:447 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  34. V. Bach, J. Fröhlich and I. M. Sigal. Return to equilibrium. J. Math. Phys. 41:3985 (2000) .

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. J. Fröhlich and M. Merkli, Another Return of ‘Return to Equilibrium’ Commun. Math. Phys. 251:235–262 (2004).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Albert.

Additional information

Supported in part by the Swiss National Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, C., Ferrari, L., Fröhlich, J. et al. Magnetism and the Weiss Exchange Field-A Theoretical Analysis Motivated by Recent Experiments. J Stat Phys 125, 77–124 (2006). https://doi.org/10.1007/s10955-006-9120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9120-0

Keywords

Navigation