Skip to main content

Anisotropy and Crystal Field

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Magnetic anisotropy, imposed through crystal-field and magnetostatic interactions, is one of the most iconic, scientifically interesting, and practically important properties of condensed matter. This article starts with the phenomenology of anisotropy, distinguishing between crystals of cubic, tetragonal, hexagonal, trigonal, and lower symmetries and between anisotropy contributions of second and higher orders. The atomic origin of magnetocrystalline anisotropy is discussed for several classes of materials, ranging from insulating oxides and rare-earth compounds to iron-series itinerant magnets. A key consideration is the crystal-field interaction of magnetic atoms, which determines, for example, the rare-earth single-ion anisotropy of today’s top-performing permanent magnets. The transmission between crystal field and anisotropy is realized by spin-orbit coupling. An important crystal-field effect is the suppression of the orbital moment by the crystal-field, which is known as quenching and has a Janus-head effect on anisotropy: the crystal field is necessary to create magnetocrystalline anisotropy, but it also limits the anisotropy in many systems. Finally, we discuss some other anisotropy mechanisms, such as shape, magnetoelastic, and exchange anisotropies, and outline how anisotropy is realized in some exemplary compounds and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloch, F., Gentile, G.: Zur Anisotropie der Magnetisierung ferromagnetischer Einkristalle. Z. Phys. 70, 395–408 (1931)

    Article  MATH  ADS  Google Scholar 

  2. Jäger, E., Perthel, R.: Magnetische Eigenschaften von Festkörpern. Akademie-Verlag, Berlin (1983)

    Book  Google Scholar 

  3. Buschow, K.H.J., van Diepen, A.M., de Wijn, H.W.: Crystal-field anisotropy of Sm3+ in SmCo5. Solid State Commun. 15, 903–906 (1974)

    Article  ADS  Google Scholar 

  4. Sankar, S.G., Rao, V.U.S., Segal, E., Wallace, W.E., Frederick, W.G.D., Garrett, H.J.: Magnetocrystalline anisotropy of SmCo5 and its interpretation on a crystal-field model. Phys. Rev. B. 11, 435–439 (1975)

    Article  ADS  Google Scholar 

  5. Cadogan, J.M., Li, H.-S., Margarian, A., Dunlop, J.B., Ryan, D.H., Collocott, S.J., Davis, R.L.: New rare-earth intermetallic phases R3(Fe,M)29Xn: (R = Ce, Pr, Nd, Sm, Gd; M = Ti, V, Cr, Mn; and X = H, N, C) (invited). J. Appl. Phys. 76, 6138–6143 (1994)

    Article  ADS  Google Scholar 

  6. Wirth, S., Wolf, M., Margarian, A., Müller, K.-H.: Determination of anisotropy constants for monoclinic ferromagnetic compounds. In: Missell, F.P., et al. (eds.) Proc. 9th Int. Symp. Magn. Anisotropy and Coercivity in RE-TM Allyos, pp. 399–408. World Scientific, Singapore (1996)

    Google Scholar 

  7. Andreev, A.V., Deryagin, A.V., Kudrevatykh, N.V., Mushnikov, N.V., Re’imer, V.A., Terent’ev, S.V.: Magnetic properties of Y2Fe14B and Nd2Fe14B and their hydrides. Zh. Eksp. Teor. Fiz. 90, 1042–1050 (1986)

    ADS  Google Scholar 

  8. Kronmüller, H.: Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Status Solidi B. 144, 385–396 (1987)

    Article  ADS  Google Scholar 

  9. Skomski, R.: Nanomagnetics. J. Phys. Condens. Matter. 15, R841–R896 (2003)

    Article  ADS  Google Scholar 

  10. Skomski, R., Coey, J.M.D.: Permanent Magnetism. Institute of Physics, Bristol (1999)

    Google Scholar 

  11. Evetts, J.E. (ed.): Concise Encyclopedia of Magnetic and Superconducting Materials. Pergamon, Oxford (1992)

    Google Scholar 

  12. Sucksmith, W., Thompson, J.E.: The magnetic anisotropy of cobalt. Proc. Roy. Soc. London. A 225, 362–375 (1954)

    ADS  Google Scholar 

  13. Chikazumi, S.: Physics of Magnetism. Wiley, New York (1964)

    Google Scholar 

  14. Thole, B.T., van der Laan, G., Sawatzky, G.A.: Strong magnetic dichroism predicted in the M4,5 X-ray absorption spectra of magnetic rare-earth materials. Phys. Rev. Lett. 55, 2086–2089 (1985)

    Article  ADS  Google Scholar 

  15. Stöhr, J.: Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999)

    Article  ADS  Google Scholar 

  16. Sander, D.: The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films. J. Phys. Condens. Matter. 16, R603–R636 (2004)

    Article  ADS  Google Scholar 

  17. Ballhausen, C.J.: Ligand Field Theory. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  18. Bethe, H.: Termaufspaltung in Kristallen. Ann. Phys. 3, 133–208 (1929)

    Article  MATH  Google Scholar 

  19. Griffith, J.S., Orgel, L.E.: Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957)

    Article  Google Scholar 

  20. Newman, D.J., Ng, B.: The superposition model of crystal fields. Rep. Prog. Phys. 52, 699–763 (1989)

    Article  ADS  Google Scholar 

  21. Skomski, R.: The screened-charge model of crystal-field interaction. Philos. Mag. B. 70, 175–189 (1994)

    Article  ADS  Google Scholar 

  22. Lawrence, J.M., Riseborough, P.S., Parks, R.D.: Valence fluctuation phenomena. Rep. Prog. Phys. 44, 1–84 (1981)

    Article  ADS  Google Scholar 

  23. Fulde, P.: Electron Correlations in Molecules and Solids. Springer, Berlin (1991)

    Book  Google Scholar 

  24. Reinhold, J.: Quantentheorie der Moleküle. Teubner, Stuttgart (1994)

    Google Scholar 

  25. Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley, New York (1963)

    Google Scholar 

  26. Herzberg, G.: Atomic Spectra and Atomic Structure. Dover, New York (1944)

    Google Scholar 

  27. Pauling, L., Wilson, E.B.: Introduction to Quantum Mechanics. McGraw-Hill, New York (1935)

    Google Scholar 

  28. Racah, G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)

    Article  ADS  Google Scholar 

  29. Jones, W., March, N.H.: Theoretical Solid State Physics I. Wiley & Sons, London (1973)

    Google Scholar 

  30. Bychkov, Y.A., Rashba, E.I.: Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984)

    ADS  Google Scholar 

  31. Skomski, R.: The itinerant limit of metallic anisotropy. IEEE Trans. Magn. 32(5), 4794–4796 (1996)

    Article  ADS  Google Scholar 

  32. Montalti, M., Credi, A., Prodi, L., Teresa Gandolfi, M.: Handbook of Photochemistry. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  33. Taylor, K.N.R., Darby, M.I.: Physics of Rare Earth Solids. Chapman and Hall, London (1972)

    Google Scholar 

  34. Cole, G.M., Garrett, B.B.: Atomic and molecular spin-orbit coupling constants for 3d transition metal ions. Inorg. Chem. 9, 1898–1902 (1970)

    Article  Google Scholar 

  35. van Vleck, J.H.: On the anisotropy of cubic ferromagnetic crystal. Phys. Rev. 52, 1178–1198 (1937)

    Article  MATH  ADS  Google Scholar 

  36. Skomski, R., Istomin, A.Y., Starace, A.F., Sellmyer, D.J.: Quantum entanglement of anisotropic magnetic nanodots. Phys. Rev. A. 70, 062307 (2004)

    Article  ADS  Google Scholar 

  37. Coey, J.M.: Magnetism and Magnetic Materials. University Press, Cambridge (2010)

    Google Scholar 

  38. Hutchings, M.T.: Point-charge calculations of energy levels of magnetic ions in crystalline electric fields. Solid State Phys. 16, 227–273 (1964)

    Article  Google Scholar 

  39. Yamada, M., Kato, H., Yamamoto, H., Nakagawa, Y.: Crystal-field analysis of the magnetization process in a series of Nd2Fe14B-type compounds. Phys. Rev. B. 38, 620–633 (1988)

    Article  ADS  Google Scholar 

  40. Herbst, J.F.: R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)

    Article  ADS  Google Scholar 

  41. Coey, J.M.D., Sun, H.: Improved magnetic properties by treatment iron-based rare-earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 87, L251–L254 (1990)

    Article  ADS  Google Scholar 

  42. Duc, N.H., Hien, T.D., Givord, D., Franse, J.J.M., de Boer, F.R.: Exchange interactions in rare-earth transition-metal compounds. J. Magn. Magn. Mater. 124, 305–311 (1993)

    Article  ADS  Google Scholar 

  43. Skomski, R.: Finite-temperature behavior of anisotropic two-sublattice magnets. J. Appl. Phys. 83, 6724–6726 (1998)

    Article  ADS  Google Scholar 

  44. Akulov, N.: Zur Quantentheorie der Temperaturabhängigkeit der Magnetisierungskurve. Z. Phys. 100, 197–202 (1936)

    Article  MATH  ADS  Google Scholar 

  45. Callen, E.R.: Temperature dependence of ferromagnetic uniaxial anisotropy constants. J. Appl. Phys. 33, 832–835 (1962)

    Article  ADS  Google Scholar 

  46. Callen, H.R., Callen, E.: The present status of the temperature dependence of the magnetocrystalline anisotropy and the l(l+1) power law. J. Phys. Chem. Solids. 27, 1271–1285 (1966)

    Article  ADS  Google Scholar 

  47. O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)

    Google Scholar 

  48. Kronmüller, H., Fähnle, M.: Micromagnetism and the Microstructure of Ferromagnetic Solids. University Press, Cambridge (2003)

    Google Scholar 

  49. Kumar, K.: RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63, R13–R57 (1988)

    Article  ADS  Google Scholar 

  50. Skomski, R.: Exchange-controlled magnetic anisotropy. J. Appl. Phys. 91, 8489–8491 (2002)

    Article  ADS  Google Scholar 

  51. Skomski, R., Kashyap, A., Sellmyer, D.J.: Finite-temperature anisotropy of PtCo magnets. IEEE Trans. Magn. 39(5), 2917–2919 (2003)

    Article  ADS  Google Scholar 

  52. Skomski, R., Mryasov, O.N., Zhou, J., Sellmyer, D.J.: Finite-temperature anisotropy of magnetic alloys. J. Appl. Phys. 99, 08E916-1-4 (2006)

    Article  Google Scholar 

  53. Brooks, H.: Ferromagnetic anisotropy and the itinerant electron model. Phys. Rev. 58, 909–918 (1940)

    Article  MATH  ADS  Google Scholar 

  54. Bruno, P.: Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B. 39, 865–868 (1989)

    Article  ADS  Google Scholar 

  55. Skomski, R., Kashyap, A., Enders, A.: Is the magnetic anisotropy proportional to the orbital moment? J. Appl. Phys. 109, 07E143-1-3 (2011)

    Article  Google Scholar 

  56. White, R.M.: Quantum Theory of Magnetism. McGraw-Hill, New York (1970)

    Google Scholar 

  57. Fuchikami, N.: Magnetic anisotropy of Magnetoplumbite BaFe12O19. J. Phys. Soc. Jpn. 20, 760–769 (1965)

    Article  ADS  Google Scholar 

  58. Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J.-U., Doerner, M.F.: High Ku materials approach to 100 Gbits/inz. TEEE Trans. Magn. 36, 10–15 (2000)

    Article  ADS  Google Scholar 

  59. Brooks, M.S.S., Johansson, B.: Density functional theory of the ground-state magnetic properties of rare earths and actinides. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 7, pp. 139–230. Elsevier, Amsterdam

    Google Scholar 

  60. Wang, D.-S., Wu, R.-Q., Freeman, A.J.: First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. Phys. Rev. B. 47, 14932–14947 (1993)

    Article  ADS  Google Scholar 

  61. Skomski, R.: Magnetoelectric Néel Anisotropies. IEEE Trans. Magn. 34(4), 1207–1209 (1998)

    Article  ADS  Google Scholar 

  62. Mattheiss, L.F.: Electronic structure of the 3d transition-metal monoxides: I. energy band results. Phys. Rev. B. 5, 290–306 (1972).; “II. Interpretation”, ibidem 306–315

    Article  ADS  Google Scholar 

  63. Newnham, R.E.: Properties of Materials: Anisotropy, Symmetry, Structure. University Press, Oxford (2004)

    Book  Google Scholar 

  64. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  ADS  Google Scholar 

  65. Sutton, A.P.: Electronic Structure of Materials. University Press, Oxford (1993)

    Google Scholar 

  66. Skomski, R., Kashyap, A., Solanki, A., Enders, A., Sellmyer, D.J.: Magnetic anisotropy in itinerant magnets. J. Appl. Phys. 107, 09A735-1-3 (2010)

    Article  Google Scholar 

  67. Yamada, Y., Suzuki, T., Kanazawa, H., Österman, J.C.: The origin of the large perpendicular magnetic anisotropy in Co3Pt alloy thin films. J. Appl. Phys. 85, 5094 (1999)

    Article  ADS  Google Scholar 

  68. Lewis, L.H., Pinkerton, F.E., Bordeaux, N., Mubarok, A., Poirier, E., Goldstein, J.I., Skomski, R., Barmak, K.: De Magnete et meteorite: cosmically motivated materials. IEEE Magn. Lett. 5, 5500104-1-4 (2014)

    Article  Google Scholar 

  69. Fisher, J.E., Goddard, J.: Magnetocrystalline and uniaxial anisotropy in electrodeposited single crystal films of cobalt and nickel. J. Phys. Soc. Jpn. 25, 413–418 (1968)

    Article  ADS  Google Scholar 

  70. Bozorth, R.M.: Ferromagnetism. van Nostrand, Princeton (1951)

    Google Scholar 

  71. Takahashi, H., Igarashi, M., Kaneko, A., Miyajima, H., Sugita, Y.: Perpendicular uniaxial magnetic anisotropy of Fe16N2(001) single crystal films grown by molecular beam Epitaxy. IEEE Trans. Magn. 35(5), 2982–2984 (1999)

    Article  ADS  Google Scholar 

  72. Coene, W., Hakkens, F., Coehoorn, R., de Mooij, B.D., De Waard, C., Fidler, J., Grössinger, R.: J. Magn. Magn. Mater. 96, 189–196 (1991)

    Article  ADS  Google Scholar 

  73. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991)

    Article  ADS  Google Scholar 

  74. Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., Soffa, W.A.: Magnetic hardening and coercivity mechanisms in L10 ordered FePd Ferromagnets. Scr. Met. Mater. 33, 1793–1805 (1995)

    Article  Google Scholar 

  75. Willoughby, S.D., Stern, R.A., Duplessis, R., MacLaren, J.M., McHenry, M.E., Laughlin, D.E.: Electronic structure calculations of hexagonal and cubic phases of Co3Pt. J. Appl. Phys. 93, 7145–7147 (2003)

    Article  ADS  Google Scholar 

  76. Coey, J.M.D.: New permanent magnets: manganese compounds. J. Phys. Condens. Matter. 26, 064211-1-6 (2014)

    Article  Google Scholar 

  77. Lessard, A., Moos, T.H., Hübner, W.: Magnetocrystalline anisotropy energy of transition-metal thin films: a nonperturbative theory. Phys. Rev. B. 56, 2594–2604 (1997)

    Article  ADS  Google Scholar 

  78. Skomski, R., Wei, X., Sellmyer, D.J.: Band-structure and correlation effects in the Co(111) planes of CoO. J. Appl. Phys. 103, 07C908-1-3 (2008)

    Article  Google Scholar 

  79. Fletcher, G.C.: Calculations of the first ferromagnetic anisotropy coefficient, gyromagnetic ratio and spectroscopic splitting factor for nickel. Proc. Phys. Soc. A. 67, 505–519 (1954). An erratum, yielding reductions of SOC constant and K1 by factors of 2 and 4, respectively, was subsequently published as a letter to the editor: G. C. Fletcher, Proc. Phys. Soc. 78, 145 (1961)

    Article  MATH  ADS  Google Scholar 

  80. Kondorski, E.M., Straube, E.: Magnetic anisotropy of nickel. Zh. Eksp. Teor. Fiz. 63, 356–365 (1972) [Sov. Phys. JETP 36, 188 (1973)]

    Google Scholar 

  81. Takayama, H., Bohnen, K.P., Fulde, P.: Magnetic surface anisotropy of transition metals. Phys. Rev. B. 14, 2287–2295 (1976)

    Article  ADS  Google Scholar 

  82. Trygg, J., Johansson, B., Eriksson, O., Wills, J.M.: Total energy calculation of the Magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. Phys. Rev. Lett. 75, 2871–2875 (1995)

    Article  ADS  Google Scholar 

  83. Daalderop, G.H.O., Kelly, P.J., Schuurmans, M.F.H.: First-principle calculation of the Magnetocrystalline anisotropy energy of Iron, cobalt, and nickel. Phys. Rev. B. 41, 11919–11937 (1990)

    Article  ADS  Google Scholar 

  84. Yang, I., Savrasov, S.Y., Kotliar, G.: Importance of correlation effects on magnetic anisotropy in Fe and Ni. Phys. Rev. Lett. 87, 216405 (2001)

    Article  ADS  Google Scholar 

  85. Zhao, X., Nguyen, M.C., Zhang, W.Y., Wang, C.Z., Kramer, M.J., Sellmyer, D.J., Li, X.Z., Zhang, F., Ke, L.Q., Antropov, V.P., Ho, K.M.: Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112, 045502-1-5 (2014)

    Article  ADS  Google Scholar 

  86. Gay, J.G., Richter, R.: Spin anisotropy of ferromagnetic films. Phys. Rev. Lett. 56, 2728–2731 (1986)

    Article  ADS  Google Scholar 

  87. Daalderop, G.H.O., Kelly, P.J., Schuurmans, M.F.H.: First-principle calculation of the magnetic anisotropy energy of (Co)n/(X)m multilayers. Phys. Rev. B. 42, 7270–7273 (1990)

    Article  ADS  Google Scholar 

  88. Johnson, M.T., Bloemen, P.J.H., den Broeder, F.J.A., de Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996)

    Article  ADS  Google Scholar 

  89. Daalderop, G.H.O., Kelly, P.J., Schuurmans, M.F.H.: Magnetocrystalline anisotropy of YCo5 and related RECo5 compounds. Phys. Rev. B. 53, 14415–14433 (1996)

    Article  ADS  Google Scholar 

  90. Manchanda, P., Kumar, P., Kashyap, A., Lucis, M.J., Shield, J.E., Mubarok, A., Goldstein, J., Constantinides, S., Barmak, K., Lewis, L.-H., Sellmyer, D.J., Skomski, R.: Intrinsic properties of Fe-substituted L10 magnets. IEEE Trans. Magn. 49, 5194–5198 (2013)

    Article  ADS  Google Scholar 

  91. Kumar, P., Kashyap, A., Balamurugan, B., Shield, J.E., Sellmyer, D.J., Skomski, R.: Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements. J. Phys. Condens. Matter. 26, 064209-1-8 (2014)

    Article  Google Scholar 

  92. Wang, X., Wang, D., Wu, R., Freeman, A.J.: Validity of the force theorem for magnetocrystalline anisotropy. J. Magn. Magn. Mater. 159, 337–341 (1996)

    Article  ADS  Google Scholar 

  93. Richter, M.: Band structure theory of magnetism in 3d-4f compounds. J. Phys. D. Appl. Phys. 31, 1017–1048 (1998)

    Article  ADS  Google Scholar 

  94. Eriksson, O., Johansson, B., Albers, R.C., Boring, A.M., Brooks, M.S.S.: Orbital magnetism in Fe, Co, and Ni. Phys. Rev. B. 42, 2707–2710 (1990)

    Article  ADS  Google Scholar 

  95. Lieb, E.H.: Density functionals for coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  96. Skomski, R., Manchanda, P., Kashyap, A.: Correlations in rare-earth transition-metal permanent magnets. J. Appl. Phys. 117, 17C740-1-4 (2015)

    Article  Google Scholar 

  97. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B. 44, 943–954 (1991)

    Article  ADS  Google Scholar 

  98. Lai, W.Y., Zheng, Q.Q., Hu, W.Y.: The giant magnetic moment and electronic correlation effect in ferromagnetic nitride Fe16N2. J. Phys. Condens. Matter. 6, L259–L264 (1994)

    Article  ADS  Google Scholar 

  99. Zhu, J.-X., Janoschek, M., Rosenberg, R., Ronning, F., Thompson, J.D., Torrez, M.A., Bauer, E.D., Batista, C.D.: LDA+DMFT approach to Magnetocrystalline anisotropy of strong magnets. Phys. Rev. X. 4, 021027-1-7 (2014)

    Google Scholar 

  100. Freeman, A.J., Wu, R.-Q., Kima, M., Gavrilenko, V.I.: Magnetism, magnetocrystalline anisotropy, magnetostriction and MOKE at surfaces and interfaces. J. Magn. Magn. Mater. 203, 1–5 (1999)

    Article  ADS  Google Scholar 

  101. Larson, P., Mazin, I.I.: Calculation of magnetic anisotropy energy in YCo5. J. Magn. Magn. Mater. 264, 7–13 (2003)

    Article  ADS  Google Scholar 

  102. Skomski, R., Sharma, V., Balamurugan, B., Shield, J.E., Kashyap, A., Sellmyer, D.J.: Anisotropy of doped transition-metal magnets. In: Kobe, S., McGuinness, P. (eds.) Proc. REPM’10, pp. 55–60. Jozef Stefan Institute, Ljubljana (2010)

    Google Scholar 

  103. Fast, J.D.: Gases in Metals. Macmillan, London (1976)

    Book  Google Scholar 

  104. Yensen, T.D.: Development of magnetic material. Electr J. 18, 93–95 (1921)

    Google Scholar 

  105. Burkert, T., Nordström, L., Eriksson, O., Heinonen, O.: Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 93, 027203-1-4 (2004)

    Article  ADS  Google Scholar 

  106. Andersson, G., Burkert, T., Warnicke, P., Björck, M., Sanyal, B., Chacon, C., Zlotea, C., Nordström, L., Nordblad, P., Eriksson, O.: Perpendicular Magnetocrystalline anisotropy in Tetragonally distorted Fe-Co alloys. Phys. Rev. Lett. 96, 037205-1-4 (2006)

    Article  ADS  Google Scholar 

  107. Jack, K.W.: The iron—nitrogen system: the crystal structures of ε-phase iron nitrides. Act Crystallogr. 5, 404–411 (1952)

    Article  Google Scholar 

  108. The α''-Fe16N2 unit cell contains two Fe8N formula units. However, quoting unit cells is an awkward notation to describe stoichiometries and rarely used. For example, one generally writes Nd2Fe14B and Sm2Co17 rather than Nd8Fe56B4 and Sm6Co51

    Google Scholar 

  109. Coey, J.M.D., O’Donnell, K., Qinian, Q., Touchais, E., Jack, K.H.: The magnetization of α''Fe16N2. J. Phys. Condens. Matter. 6, L23–L28 (1994)

    Article  ADS  Google Scholar 

  110. Kim, T.K., Takahashi, M.: New magnetic material having ultrahigh magnetic moment. Appl. Phys. Lett. 20, 492–494 (1972)

    Article  ADS  Google Scholar 

  111. Ji, N., Liu, X., Wang, J.-P.: Theory of giant saturation magnetization in α''-Fe16N2: role of partial localization in ferromagnetism of 3d transition metals. New J. Phys. 12, 063032-1-8 (2010)

    Article  ADS  Google Scholar 

  112. Ke, L.-Q., Belashchenko, K.D., van Schilfgaarde, M., Kotani, T., Antropov, V.P.: Effects of alloying and strain on the magnetic properties of Fe16N2. Phys. Rev. B. 88, 024404-1-9 (2013)

    Article  ADS  Google Scholar 

  113. Trommler, S., Hänisch, J., Matias, V., Hühne, R., Reich, E., Iida, K., Haindl, S., Schultz, L., Holzapfel, B.: Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes. Supercond. Sci. Technol. 25, 84019-1-7 (2012)

    Article  Google Scholar 

  114. Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  ADS  Google Scholar 

  115. McCurrie, R.A.: Ferromagnetic Materials—Structure and Properties. Academic Press, London (1994)

    Google Scholar 

  116. Skomski, R., Liu, Y., Shield, J.E., Hadjipanayis, G.C., Sellmyer, D.J.: Permanent magnetism of dense-packed nanostructures. J. Appl. Phys. 107, 09A739-1-3 (2010)

    Article  Google Scholar 

  117. Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A., Sellmyer, D.J.: Predicting the future of permanent-magnet materials (invited). IEEE Trans. Magn. 49, 3215–3220 (2013)

    Article  ADS  Google Scholar 

  118. Zhou, L., Miller, M.K., Lu, P., Ke, L., Skomski, R., Dillon, H., Xing, Q., Palasyuk, A., McCartney, M.R., Smith, D.J., Constantinides, S., McCallum, R.W., Anderson, I.E., Antropov, V., Kramer, M.J.: Architecture and magnetism of alnico. Acta Mater. 74, 224–233 (2014)

    Article  ADS  Google Scholar 

  119. Néel, L.: Anisotropie Magnétique Superficielle et Surstructures d’Orientation. J. Phys. Radium. 15, 225–239 (1954)

    Article  MATH  Google Scholar 

  120. Skomski, R.: Interstitial modification. In: Coey, J.M.D. (ed.) Rare-Earth—Iron Permanent Magnets, pp. 178–217. University Press, Oxford (1996)

    Google Scholar 

  121. Jensen, J., Mackintosh, A.R.: Rare Earth Magnetism: Structures and Excitations. Clarendon, Oxford (1991)

    Google Scholar 

  122. Wijn, H.P.J. (ed.): Magnetic Properties of Metals: d-Elements, Alloys, and Compounds. Springer, Berlin (1991)

    Google Scholar 

  123. de Jongh, L.J., Miedema, A.R.: Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974)

    Article  ADS  Google Scholar 

  124. Sellmyer, D.J., Nafis, S.: Phase transition behavior in a random-anisotropy system. Phys. Rev. Lett. 57, 1173–1176 (1986)

    Article  ADS  Google Scholar 

  125. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  MATH  ADS  Google Scholar 

  126. Brush, S.G.: History of the Lenz-Ising model. Rev. Mod. Phys. 39, 883–893 (1967)

    Article  ADS  Google Scholar 

  127. Yeomans, J.M.: Statistical Mechanics of Phase Transitions. University Press, Oxford (1992)

    Google Scholar 

  128. Binek, C.: Ising-Type Antiferromagnets: Model Systems in Statistical Physics and in the Magnetism of Exchange Bias Springer Tracts in Modern Physics 196. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  129. Skomski, R.: Simple Models of Magnetism. University Press, Oxford (2008)

    Book  Google Scholar 

  130. Sachdev, S.: Quantum Phase Transitions. University Press, Cambridge (1999)

    MATH  Google Scholar 

  131. Skomski, R.: On the Ising character of the quantum-phase transition in LiHoF4. AIP Adv. 6, 055704-1-5 (2016)

    Article  ADS  Google Scholar 

  132. Stevens, K.W.H.: A note on exchange interactions. Rev. Mod. Phys. 25, 166 (1953)

    Article  ADS  Google Scholar 

  133. Dzyaloshinsky, I.: A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  134. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  135. Fischer, K.-H., Hertz, A.J.: Spin Glasses. University Press, Cambridge (1991)

    Book  Google Scholar 

  136. Ullah, A., Balamurugan, B., Zhang, W., Valloppilly, S., Li, X.-Z., Pahari, R., Yue, L.-P., Sokolov, A., Sellmyer, D.J., Skomski, R.: Crystal structure and Dzyaloshinski–Moriya micromagnetics. IEEE Trans. Magn. 55, 7100305-1-5 (2019)

    Article  Google Scholar 

  137. Moorjani, K., Coey, J.M.D.: Magnetic Glasses. Elsevier, Amsterdam (1984)

    Google Scholar 

  138. Skomski, R., Honolka, J., Bornemann, S., Ebert, H., Enders, A.: Dzyaloshinski–Moriya micromagnetics of magnetic surface alloys. J. Appl. Phys. 105, 07D533-1-3 (2009)

    Article  Google Scholar 

  139. Bak, P., Jensen, H.H.: Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C. 13, L881–L885 (1980)

    Article  ADS  Google Scholar 

  140. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956)

    Article  ADS  Google Scholar 

  141. Kneller, E.: Ferromagnetismus. Springer, Berlin (1962)

    Book  MATH  Google Scholar 

  142. Balamurugan, B., Mukherjee, P., Skomski, R., Manchanda, P., Das, B., Sellmyer, D.J.: Magnetic nanostructuring and overcoming Brown’s paradox to realize extraordinary high-temperature energy products. Sci. Rep. 4, 6265-1-6 (2014)

    ADS  Google Scholar 

  143. Balamurugan, B., Das, B., Shah, V.R., Skomski, R., Li, X.Z., Sellmyer, D.J.: Assembly of uniaxially aligned rare-earth-free nanomagnets. Appl. Phys. Lett. 101, 122407-1-5 (2012)

    Article  ADS  Google Scholar 

  144. Enders, A., Skomski, R., Honolka, J.: Magnetic surface nanostructures. J. Phys. Condens. Matter. 22, 433001-1-32 (2010)

    Article  ADS  Google Scholar 

  145. Bander, M., Mills, D.L.: Ferromagnetism of ultrathin films. Phys. Rev. B. 38, 12015–12018 (1988)

    Article  ADS  Google Scholar 

  146. Shen, J., Skomski, R., Klaua, M., Jenniches, H., Manoharan, S.S., Kirschner, J.: Magnetism in one dimension: Fe on Cu(111). Phys. Rev. B. 56, 2340–2343 (1997)

    Article  ADS  Google Scholar 

  147. Gradmann, U.: Magnetism in ultrathin transition metal films. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 7, pp. 1–95. Elsevier, Amsterdam (1993)

    Google Scholar 

  148. Sander, D., Skomski, R., Schmidthals, C., Enders, A., Kirschner, J.: Film stress and domain wall pinning in Sesquilayer iron films on W(110). Phys. Rev. Lett. 77, 2566–2569 (1996)

    Article  ADS  Google Scholar 

  149. Chuang, D.S., Ballentine, C.A., O’Handley, R.C.: Surface and step magnetic anisotropy. Phys. Rev. B. 49, 15084–15095 (1994)

    Article  ADS  Google Scholar 

  150. Coehoorn, R., de Mooij, D.B., Duchateau, J.P.W.B., Buschow, K.H.J.: Novel permanent magnetic materials made by rapid quenching. J. Phys. 49(C-8), 669–670 (1988)

    Google Scholar 

  151. Callen, E., Liu, Y.J., Cullen, J.R.: Initial magnetization, remanence, and coercivity of the random anisotropy amorphous ferromagnet. Phys. Rev. B. 16, 263–270 (1977)

    Article  ADS  Google Scholar 

  152. Schneider, J., Eckert, D., Müller, K.-H., Handstein, A., Mühlbach, H., Sassik, H., Kirchmayr, H.R.: Magnetization processes in Nd4Fe77B19 permanent magnetic materials. Materials Lett. 9, 201–203 (1990)

    Article  Google Scholar 

  153. Manaf, A., Buckley, R.A., Davies, H.A.: New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater. 128, 302–306 (1993)

    Article  ADS  Google Scholar 

  154. Müller, K.-H., Eckert, D., Wendhausen, P.A.P., Handstein, A., Wolf, M.: Description of texture for permanent magnets. IEEE Trans. Magn. 30, 586–588 (1994)

    Article  ADS  Google Scholar 

  155. Herzer, G.: Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112, 258–262 (1992)

    Article  ADS  Google Scholar 

  156. Alben, R., Becker, J.J., Chi, M.C.: Random anisotropy in amorphous ferromagnets. J. Appl. Phys. 49, 1653–1658 (1978)

    Article  ADS  Google Scholar 

  157. Balasubramanian, B., Skomski, R., Li, X.-Z., Valloppilly, S.R., Shield, J.E., Hadjipanayis, G.C., Sellmyer, D.J.: Cluster synthesis and direct ordering of rare-earth transition-metal Nanomagnets. Nano Lett. 11, 1747–1752 (2011)

    Article  ADS  Google Scholar 

  158. Imry, Y., Ma, S.-K.: Random-field instability of of the ordered state of continuos symmetry. Phys. Rev. Lett. 35, 1399–1401 (1975)

    Article  ADS  Google Scholar 

  159. Harris, R., Plischke, M., Zuckermann, M.J.: New model for amorphous magnetism. Phys. Rev. Lett. 31, 160–162 (1973)

    Article  ADS  Google Scholar 

  160. Skomski, R.: Spin-glass permanent magnets. J. Magn. Magn. Mater. 157-158, 713–714 (1996)

    Article  ADS  Google Scholar 

  161. Chudnovsky, E.M., Saslow, W.M., Serota, R.A.: Ordering in ferromagnets with random anisotropy. Phys. Rev. B. 33, 251–261 (1986)

    Article  ADS  Google Scholar 

  162. Richter, J., Skomski, R.: Antiferromagnets with random anisotropy. Phys. Status Solidi B. 153, 711–719 (1989)

    Article  ADS  Google Scholar 

  163. Gambaradella, P., Rusponi, S., Veronese, M., Dhesi, S.S., Grazioli, C., Dallmeyer, A., Cabria, I., Zeller, R., Dederichs, P.H., Kern, K., Carbone, C., Brune, H.: Giant magnetic anisotropy of single co atoms and nanoparticles. Science. 300, 1130–1133 (2003)

    Article  ADS  Google Scholar 

  164. Kumar, P., Skomski, R., Manchanda, P., Kashyap, A.: Ab-initio study of anisotropy and nonuniaxial anisotropy coefficients in Pd nanochains. Chem. Phys. Lett. 583, 109–113 (2013)

    Article  ADS  Google Scholar 

  165. Dorantes-Dávila, J., Pastor, G.M.: Magnetic anisotropy of one-dimensional nanostructures of transition metals. Phys. Rev. Lett. 81, 208–211 (1998)

    Article  ADS  Google Scholar 

  166. Mokrousov, Y., Bihlmayer, G., Heinze, S., Blügel, S.: Giant Magnetocrystalline anisotropies of 4d transition-metal Monowires. Phys. Rev. Lett. 96, 147201-1-4 (2006)

    Article  ADS  Google Scholar 

  167. Rau, I.G., Baumann, S., Rusponi, S., Donati, F., Stepanow, S., Gragnaniello, L., Dreiser, J., Piamonteze, C., Nolting, F., Gangopadhyay, S., Albertini, O.R., Macfarlane, R.M., Lutz, C.P., Jones, B.A., Gamberdella, P., Heinrich, A.J., Brune, H.: Reaching the magnetic anisotropy limit of a 3d metal atom. Science. 344, 988–992 (2014)

    Article  ADS  Google Scholar 

  168. Weisheit, M., Fähler, S., Marty, A., Souche, Y., Poinsignon, C., Givord, D.: Electric field-induced modification of magnetism in thin-film Ferromagnets. Science. 315, 349–351 (2007)

    Article  ADS  Google Scholar 

  169. Shiota, Y., Maruyama, T., Nozaki, T., Shinjo, T., Shiraishi, M., Suzuki, Y.: Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express. 2, 063001-1-3 (2009)

    Article  ADS  Google Scholar 

  170. Manchanda, P., Kumar, P., Fangohr, H., Sellmyer, D.J., Kashyap, A., Skomski, R.: Magnetoelectric control of surface anisotropy and nucleation modes in L10-CoPt thin films. IEEE Magn. Lett. 5, 2500104-1-4 (2014)

    Article  Google Scholar 

  171. Manchanda, P., Skomski, R., Prabhakar, A., Kashyap, A.: Magnetoelectric effect in Fe linear chains on Pt (001). J. Appl. Phys. 115, 17C733-1-3 (2014)

    Article  Google Scholar 

  172. Manchanda, P., Kumar, P., Skomski, R., Kashyap, A.: Magnetoelectric effect in organometallic vanadium-benzene wires. Chem. Phys. Lett. 568, 121–124 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This chapter has benefited from discussions with B. Balamurugan, C. Binek, R. Choudhary, J. Cui, P. A. Dowben, A. Enders, O. Gutfleisch, G. C. Hadjipanayis, H. Herper, X. Hong, S. S. Jaswal, P. Kharel, M. J. Kramer, P. Kumar, A. Laraoui, L. H. Lewis, S.-H. Liou, J.-P. Liu, R. W. McCallum, O. N. Mryasov, D. Paudyal, R. Sabirianov, S. S. Sankar, T. Schrefl, D. J. Sellmyer, J. E. Shield, A. K. Solanki, and A. Ullah. The underlying work was or has been supported by ARO (W911NF-10-2-0099), DOE (DE-FG02-04ER46152), NSF EQUATE (OIA-2044049), partially NSF-DMREF (1729288), HCC, and NCMN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Skomski .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendix A: Spherical Harmonics

Separating radial (r) and angular (θ, ϕ) degrees of freedom, any function f(θ, ϕ) can be expanded into spherical harmonicsYlm(θ, ϕ). The present chapter uses this expansion to describe (i) atomic wave functions ψ(r), as in Figs. 4 and 11, (ii) atomic charge densities n(r), (iii) crystal-field potentialsV(r) and operator equivalents 𝒪ml, and (iv) magnetic anisotropy energies Ea(θ, ϕ). These quantities differ by radial part and physical meaning, but their angular dependences are all described by

$$ {Y_{\mathrm{l}}}^{\mathrm{m}}\!\left(\theta, \phi \right)={{\mathcal{N}}_{\mathrm{l}}}^{\mathrm{m}}\exp \left(\mathrm{i} m\phi \right){P_{\mathrm{l}}}^{\mathrm{m}}\!\left(\cos \theta \right) $$
(72)

where the Plm are the the associated Legendre polynomials. Concerning sign and magnitude of the normalization factor 𝒩lm, we use the convention

$$ {{\mathcal{N}}_{\mathrm{l}}}^{\mathrm{m}}=\sqrt{\frac{\left(2l+1\right)}{4\uppi}\frac{\left(l-m\right)!}{\left(l+m\right)!}} $$
(73)

It is sometimes useful to express Eq. (1) in terms of Cartesian coordinates or “direction cosines” x, y, and z. Last but not least, the complex functions exp.(i) may be replaced by real functions, using exp.(±i) = cos () ± i sin(). These real spherical harmonics, also known as tesseral harmonics, are often convenient, because charge densities, crystal-field potentials, and anisotropy energies are real by definition. However, the distinction remains important in quantum mechanics, because complex and real spherical harmonics correspond to unquenched and quenched wave functions, respectively.

A very frequently occurring function is

$$ {Y_2}^0=\frac{1}{2}\sqrt{\frac{5}{4\pi }}\left(3\ {\cos}^2\theta \hbox{--} 1\right) $$
(74a)

or

$$ {Y_2}^0=\frac{1}{2}\sqrt{\frac{5}{4\pi }}\frac{3{z}^2-{r}^2}{r^2} $$
(74b)

Note that the Cartesian coordinates require a factor 1/rl, which ensures that the Ylm are dimensionless and that the expansion is in terms of direction cosines x/r, y/r, and z/r. Up to the sixth order, there are Table 16 lists real and complex spherical harmonics up to the sixth order.

Table 16 Spherical harmonics in several representations. For m ≠ 0, the real representation requires an additional factor \( 1/\sqrt{2} \), because the normalization behavior of cos() ± sin() differs from that of exp.(i). Furthermore, the minus sign in 𝒩lm is not used for m ≠ 0. The following formulae can be used to extract the full spherical harmonics from the table: Ylm = π-1/2fNfP exp.(i), Ylm = π-1/2fNfR/rl (m = 0), and Ylm = (2π)-1/2fNfR/rl (m ≠ 0). Anisotropy energies involve even-order spherical harmonics only (gray rows)

Appendix B: Point Groups

Table 17 Less common space and point groups. The space groups in bold characters are frequently encountered in magnetism and separately considered in the main text of the chapter (Table 1)

Appendix C: Hydrogen-Like Atomic 3d Wave Functions

Hydrogen-like 3d wave functions are obtained by solving the Schrödinger equation for n = 3 (third shell) and l = 2 (d electrons). There are 2 l + 1 = 5 different orbitals, and each can be occupied by up to two electrons. Explicitly,

$$ {\mid} xy{>}={R}_{3\mathrm{d}}\!\left(\mathrm{r}\right)\!{\sin}^2\theta\ \sin 2\phi $$
(75)
$$ {\mid} {x}^2-{y}^2{>}=\mathcal{N}\;{R}_{3\mathrm{d}}\!\left(\mathrm{r}\right){\sin}^2\theta\ \cos 2\phi $$
(76)
$$ {\mid} xz{>}=2\mathcal{N}\;{R}_{3\mathrm{d}}\!\left(\mathrm{r}\right)\sin \theta \cos \theta\ \cos \phi $$
(77)
$$ {\mid} {z}^2{>}={R}_{3\mathrm{d}}\!\left(\mathrm{r}\right) \left(3\ {\sin}^2\theta -1\right) $$
(78)
$$ {\mid} yz\!>\,=2\mathcal{N}\;{R}_{3\mathrm{d}}\!\left(\mathrm{r}\right)\ \sin \theta\ \cos \theta \sin \phi $$
(79)

where 𝒩 = \( \sqrt{15/16\uppi} \), ao = 0.529 Å, and

$$ {R}_{3d}(r)=\frac{4{Z}^{5/2}{r}^2}{81{a}_o^2\sqrt{30{a}_o^3}}\kern0.5em \exp \left(-\frac{Zr}{a_o}\right) $$
(80)

Aside from the real set of wave functions, there exist complex wave functions of the type exp.(±i). The two sets of wave functions are linear combinations of each other, and both are solutions of the Schrödinger equation. However, they are nonequivalent with respect to orbital moment and magnetic anisotropy.

More generally, Ψ(r, ϕ, θ) = Rnl(r) Ylm(ϕ, θ), where it is convenient to express the radial wave functions in terms of the parameter ro = ao/Z:

$$ {R}_{1\mathrm{s}}=\frac{2}{\sqrt{{r_{\mathrm{o}}}^3}}\ \exp \left(-\frac{r}{r_{\mathrm{o}}}\right) $$
$$ {R}_{2\mathrm{s}}=\frac{1}{2\sqrt{2{r_{\mathrm{o}}}^3}}\left(2-\frac{r}{r_{\mathrm{o}}}\right)\ \exp \left(-\frac{r}{2{r}_{\mathrm{o}}}\right) $$
$$ {R}_{2\mathrm{p}}=\frac{1}{2\sqrt{6{r_{\mathrm{o}}}^3}}\frac{r}{r_{\mathrm{o}}}\ \exp \left(-\frac{r}{2{r}_{\mathrm{o}}}\right) $$
$$ {R}_{3\mathrm{s}}=\frac{2}{81\sqrt{3{r_{\mathrm{o}}}^3}}\ \left(27-18\frac{r}{r_{\mathrm{o}}}+2\frac{r2}{{r_{\mathrm{o}}}^2}\right)\ \exp \left(-\frac{r}{3{r}_{\mathrm{o}}}\right) $$
$$ {R}_{3\mathrm{p}}=\frac{4}{81\sqrt{6{r_{\mathrm{o}}}^3}}\ \left(6\frac{r}{r_{\mathrm{o}}}-\frac{r^2}{{r_{\mathrm{o}}}^2}\right)\ \exp \left(-\frac{r}{3{r}_{\mathrm{o}}}\right) $$
$$ {R}_{3\mathrm{d}}=\frac{4}{81\sqrt{30{r_{\mathrm{o}}}^3}}\ \frac{r^2}{{r_{\mathrm{o}}}^2}\ \exp \left(-\frac{r}{3{r}_{\mathrm{o}}}\right) $$
$$ {R}_{4\mathrm{f}}=\frac{1}{768\sqrt{35{r_{\mathrm{o}}}^3}}\ \frac{r^3}{{r_{\mathrm{o}}}^3}\ \exp \left(-\frac{r}{4{r}_{\mathrm{o}}}\right) $$

From the radial wave functions, the following averages are obtained:

$$ {<}{r}^2{>}=\frac{n^2{r_{\mathrm{o}}}^2}{2}\left(5{n}^2+1-3l\left(l+1\right)\right) $$
$$ {<}r{>}=\frac{r_{\mathrm{o}}}{2}\left(3\kern0.5em {\mathrm{n}}^2-l\left(l+1\right)\right) $$
$$ {<}1/r{>}\,=\frac{1}{n^2{r}_{\mathrm{o}}} $$
$$ {<}1/{r}^2{>}=\frac{2}{n^3{r_{\mathrm{o}}}^2\left(2\mathrm{l}+1\right)} $$
$$ {<}1/{r}^3{>}=\frac{2}{n^3{r_{\mathrm{o}}}^3\mathrm{l}\left(\mathrm{l}+1\right)\left(\mathrm{l}+2\right)} $$

These formulae have numerous applications. For example, <r> and the square root of <r2> are used to estimate shell radii, <1/r> gives the electronic energy, and <1/r3> determines the strength of the spin-orbit coupling on which magnetocrystalline anisotropy relies.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skomski, R., Manchanda, P., Kashyap, A. (2021). Anisotropy and Crystal Field. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_3

Download citation

Publish with us

Policies and ethics