Skip to main content
Log in

Tailor-Made Electrospun Nanofibers of Biowaste Lignin/Recycled Poly(Ethylene Terephthalate)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Producing nanofibers of a desired predetermined diameter is important for all applications where the nano-sized dimension plays a key role. In this research, nanofibers from a blend of lignin and recycled poly(ethylene terephthalate) (PET) were prepared using the electrospinning process. The design of experiments (DoE) statistical methodology was employed to screen the significant factors and optimize the whole process. A fractional factorial design with five electrospinning variables (spinning distance, solution concentration, voltage, lignin ratio and flow rate) was implemented to identify their effect on the average fiber diameter and on its standard deviation. The morphology of the electrospun mats was examined using Scanning Electron Microscopy. The statistical analysis of the measurements revealed that only the spinning distance and the concentration of the spinning solution have significant effect on the two responses. To minimize the average fiber diameter, the method of steepest descent was applied in two distinct experimental areas. After lowering the solution concentration and the spinning distance up to the point of bead formation, the average fiber diameter was minimized to 191 ± 60 nm. Following the method reported here, tailor-made lignin/recycled PET nanofibers of a set, desired diameter can be fabricated by properly adjusting the electrospinning variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) ACS Sustain Chem Eng 2:1072–1092. doi:10.1021/sc500087z

    Article  CAS  Google Scholar 

  2. Alekhina M, Erdmann J, Ebert A et al (2015) J Mater Sci 50:6395–6406. doi:10.1007/s10853-015-9192-9

    Article  CAS  Google Scholar 

  3. Kim S, Park J, Lee J et al (2015) Fibers Polym 16:744–751. doi:10.1007/s12221-015-0744-z

    Article  CAS  Google Scholar 

  4. Duval A, Lawoko M (2014) React Funct Polym 85:78–96. doi:10.1016/j.reactfunctpolym.2014.09.017

    Article  CAS  Google Scholar 

  5. Santos RPO, Rodrigues BVM, Ramires EC et al (2015) Ind Crops Prod 72:1–8. doi:10.1016/j.indcrop.2015.01.024

    Article  Google Scholar 

  6. Ruiz-Rosas R, Bedia J, Lallave M et al (2010) Carbon N Y 48:696–705. doi:10.1016/j.carbon.2009.10.014

    Article  CAS  Google Scholar 

  7. Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Science 344:1246843. doi:10.1126/science.1246843

    Article  Google Scholar 

  8. Frank E, Steudle LM, Ingildeev D et al (2014) Angew Chemie Int Ed 53:5262–5298. doi:10.1002/anie.201306129

    Article  CAS  Google Scholar 

  9. Wang C-Q, Wang H, Liu Y-N (2015) Waste Manag 35:42–47. doi:10.1016/j.wasman.2014.09.025

    Article  Google Scholar 

  10. NAPCOR—National Association for PET Container Resources (USA). http://www.napcor.com/PET/landing_petrecycling.html. Accessed 31 May 2016

  11. Ko F, Wan Y (2014) Introduction to nanofiber materials. Cambridge University Press, Cambridge, pp 49–58

    Book  Google Scholar 

  12. Hao J, Lei G, Li Z et al (2013) J Memb Sci 428:11–16. doi:10.1016/j.memsci.2012.09.058

    Article  CAS  Google Scholar 

  13. Chen C, Wang L, Huang Y (2008) Mater Lett 62:3515–3517. doi:10.1016/j.matlet.2008.03.034

    Article  CAS  Google Scholar 

  14. Meng X, Luo N, Cao S et al (2009) Mater Lett 63:1401–1403. doi:10.1016/j.matlet.2009.03.023

    Article  CAS  Google Scholar 

  15. Chen C, Wang L, Huang Y (2008) Sol Energy Mater Sol Cells 92:1382–1387. doi:10.1016/j.solmat.2008.05.013

    Article  CAS  Google Scholar 

  16. Hoover LA, Schiffman JD, Elimelech M (2013) Desalination 308:73–81. doi:10.1016/j.desal.2012.07.019

    Article  CAS  Google Scholar 

  17. Hadjizadeh A, Ajji A, Bureau MN (2011) J Mech Behav Biomed Mater 4:340–351. doi:10.1016/j.jmbbm.2010.10.014

    Article  Google Scholar 

  18. Persano L, Camposeo A, Pisignano D (2014) Prog Polym Sci 43:48–95. doi:10.1016/j.progpolymsci.2014.10.001

    Article  Google Scholar 

  19. Kadla JF, Kubo S, Gilbert RD, Venditti RA (2002) Lignin-based carbon fibers. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic, Berlin, pp 121–137

    Chapter  Google Scholar 

  20. Kubo S, Kadla JF (2005) J Polym Environ 13:97–105. doi:10.1007/s10924-005-2941-0

    Article  CAS  Google Scholar 

  21. Compere AL, Griffith WL, Leitten CF, Pickel JM (2005) Evaluation of lignin from alkaline-pulped hardwood black liquor, Oak Ridge National Laboratory, May 2005. http://web.ornl.gov/info/reports/2005/3445605475900.pdf

  22. Kadla JF, Kubo S (2004) Compos A Appl Sci Manuf 35:395–400. doi:10.1016/j.compositesa.2003.09.019

    Article  Google Scholar 

  23. Canetti M, Bertini F (2007) Compos Sci Technol 67:3151–3157. doi:10.1016/j.compscitech.2007.04.013

    Article  CAS  Google Scholar 

  24. Canetti M, Bertini F (2009) E-Polymers. doi: 10.1016/S0032

  25. Dallmeyer I, Ko F, Kadla JF (2010) J Wood Chem Technol 30:315–329. doi:10.1080/02773813.2010.527782

    Article  CAS  Google Scholar 

  26. Choi DI, Lee J-N, Song J et al (2013) J Solid State Electrochem 17:2471–2475. doi:10.1007/s10008-013-2112-5

    Article  CAS  Google Scholar 

  27. Srithep Y, Javadi A, Pilla S et al (2011) Polym Eng Sci 51:1023. doi:10.1002/pen

    Article  CAS  Google Scholar 

  28. Spinace MAS, De Paoli MA (2001) J Appl Polym Sci 80:20–25

    Article  CAS  Google Scholar 

  29. Pesetskii SS, Jurkowski B, Filimonov OV et al (2010) J Appl Polym Sci 119:225–234

    Article  Google Scholar 

  30. Khoffi F, Khenoussi N, Harzallah O, Drean J (2011) Phys Procedia 21:240–245. doi:10.1016/j.phpro.2011.11.001

    Article  CAS  Google Scholar 

  31. Montgomery DC (2013) Design and Analysis of Experiments.Wiley, 8th ed, international student version, chapters 5–8

  32. Brazen CS, Rosen SL (2012) Fundamental Principles of Polymeric Materials. Wiley, 3rd ed. chapter 14

  33. Gu SY, Ren J, Vancso GJ (2005) Eur Polym J 41:2559–2568. doi:10.1016/j.eurpolymj.2005.05.008

    Article  CAS  Google Scholar 

  34. Dallmeyer I, Ko F, Kadla JF (2014) Ind Eng Chem Res 53:2697–2705. doi:10.1021/ie403724y

    Article  CAS  Google Scholar 

  35. Li Y, Huang Z, Lǚ Y (2006) Eur Polym J 42:1696–1704. doi:10.1016/j.eurpolymj.2006.02.002

    Article  CAS  Google Scholar 

  36. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Polymer (Guildf) 48:6913–6922. doi:10.1016/j.polymer.2007.09.017

    Article  CAS  Google Scholar 

  37. Awal A, Sain M, Chowdhury M (2011) Compos B Eng 42:1220–1225. doi:10.1016/j.compositesb.2011.02.011

    Article  Google Scholar 

  38. Heikkilä P, Harlin A (2008) Eur Polym J 44:3067–3079. doi:10.1016/j.eurpolymj.2008.06.032

    Article  Google Scholar 

  39. Park JY, Lee IH, Bea GN (2008) J Ind Eng Chem 14:707–713. doi:10.1016/j.jiec.2008.03.006

    Article  CAS  Google Scholar 

  40. Cramariuc B, Cramariuc R, Scarlet R et al (2013) J Electrostat 71:189–198. doi:10.1016/j.elstat.2012.12.018

    Article  CAS  Google Scholar 

  41. Kong L, Ziegler GR (2013) Carbohydr Polym 92:1416–1422. doi:10.1016/j.carbpol.2012.09.026

    Article  CAS  Google Scholar 

  42. Yördem OS, Papila M, Menceloǧlu YZ (2008) Mater Des 29:34–44. doi:10.1016/j.matdes.2006.12.013

    Article  Google Scholar 

  43. Montgomery DC (2013) Design and analysis of experiments. Wiley, 8th edition/international student version, chapter 11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Zuburtikudis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

* Ioannis Zuburtikudis: Currently on a leave of absence from the Department of Mechanical and Industrial Design Engineering, TEI of Western Macedonia, 50100 Kozani, Greece.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svinterikos, E., Zuburtikudis, I. Tailor-Made Electrospun Nanofibers of Biowaste Lignin/Recycled Poly(Ethylene Terephthalate). J Polym Environ 25, 465–478 (2017). https://doi.org/10.1007/s10924-016-0806-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0806-3

Keywords

Navigation