Skip to main content

Abstract

Carbon fibers are one of the most important engineering materials in advanced composites. They are lightweight, fatigue resistant materials that possess high strength and high stiffness. These unique properties result from their flawless structure and the development of highly anisotropic graphic crystallites orientated along the fiber axis during the production process.1 Carbon fibers are manufactured by thermally treating fibers at 1000-2000 ℃ in an inert atmosphere while maintaining the fibrous structure. This is aided by a stabilization stage in which the precursor fibers are heated under tension at 200-300 ℃ in the presence of air. This causes crosslinking on the fiber surfaces, among other reactions, and prevents shrinking, melting and fusing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Riggs, in: Encyclopedia of Polymer Science and Engineering, edited by H. F. Mark and J. I. Kroschwitz (Wiley, New York, 1985), p. 17 v.

    Google Scholar 

  2. J. W. Swan, British Patent: 4933 (1880).

    Google Scholar 

  3. T. A. Edison, U.S. Patent: 223,398 (1880).

    Google Scholar 

  4. J. B. Donnet and O. P. Bahl, in: Encyclopedia of Physical Science and Technology (Academic Press, New York, 1987), p. 515.

    Google Scholar 

  5. Developed in the 1940’s by DuPont and Union Carbide, PAN began to be used as a carbon fiber precursor material in the 1960’s through work done in Japan (Toray) and Great Britain (Courtaulds).

    Google Scholar 

  6. J. B. Donnet, Carbon Fibers, 3rd Rev. and Expand Ed. (Marcel Dekker, New York, 1998), viii, 573.

    Google Scholar 

  7. H. Hatori, Y. Yamada, and M. Shiraishi, Inplane orientation and graphitizability of polyimide films. 2. Film thickness dependence, Carbon 31(8), 1307–1312 (1993).

    Article  CAS  Google Scholar 

  8. D. E. Sliva and W. G. Selley, Continuous method for making spinnable polyacetylene solutions convertable to high strength carbon fibers, U.S. Patent: 3928516 (1975).

    Google Scholar 

  9. C. M. Krutchen, Melt extrudable polyacetylene copolymer blends, U.S. Patent: 3852235 (1974)

    Google Scholar 

  10. R. W. Kobayashi and R. D. Zaldivar, Carborane catalyzed graphitization of polyarylacetylene (PAA), U.S. Patent: 5288438 (1994).

    Google Scholar 

  11. A. Nagasaki, H. Ashitaka, Y. Kusuki, D. Oda, and T. Yoshinaga, Process for producing carbon fiber, U.S. Patent: 4131644 (1978).

    Google Scholar 

  12. S. Horikiri, J. Iseki, and M. Minobe, Process for producing carbon fiber, U.S. Patent: 4070446 (1978).

    Google Scholar 

  13. T. Araki, H. Takita, and K. Asano, Verfahren zum herstellen von kolenstoffasern, German Patent: 2024063 (1970).

    Google Scholar 

  14. I. Seo, T. Oono, and Y. Murakami, Process for producing raw material pitch for carbon materials, European Patent: 381493 (1990)

    Google Scholar 

  15. M. Shiokawa and T. Matsumoto, Production of pitch-based carbon fiber, Japanese Patent:1282349 (1989).

    Google Scholar 

  16. H. Ashitaka, Y. Kusuki, S. Yamamoto, Y. Ogata, and A. Nagasaka, Preparation of carbon-fibers from syndiotactic 1,2-polybutadiene, J. Appl. Polym. Sci. 29(9), 2763–2776 (1984).

    Article  CAS  Google Scholar 

  17. W. G. Glasser and S. S. Kelley, in: Concise Encylopedia of Polymer Science and Engineering, edited by J. I. Kroschwitz (Wiley, New York, 1990), p. 544.

    Google Scholar 

  18. D. Fengel and G. Wegener, Wood: Chemistry, Ultrastructure,Reactions. (W. de Gruyter, Berlin, 1984), xiii, 613.

    Google Scholar 

  19. W. G. Glasser, R. A. Northey, and T. P. Schultz, Lignin: Historical,Biological, and Materials Perspectives (ACS Symposium Series 742, American Chemical Society, Washington, D.C., 2000), xv, 559.

    Google Scholar 

  20. S. Otani, Y. Fukuoka, B. Igarashi, and K. Sasaki, Method for producing carbonized lignin fiber, U.S. Patent: 3,461,082 (1969).

    Google Scholar 

  21. M. Mansmann, G. Winter, P. Pampus, H. Schnoring, and N. Schon, Stable lignin fibers, U.S. Patent: 3,723,609 (1973).

    Google Scholar 

  22. “Kayacarbon” Manufacturer’s brochure, N.K.C.L., “Kayacarbon”Manufacturer’s brochure, Nippon Kayaku Co. Ltd.

    Google Scholar 

  23. D. J. Johnson, I. Tomizuka, and O. Watanabe, Fine-structure of lignin-based carbon-fibers, Carbon 13(4), 321–325 (1975).

    Article  CAS  Google Scholar 

  24. D. J. Johnson, I. Tomizuka, and O. Watanabe, Fine-structure of pitch-based carbon-fibers, Carbon 13(6), 529–534 (1975).

    Article  CAS  Google Scholar 

  25. I. Tomizuka and D. J. Johnson, Microvoids in pitch-based and lignin-based carbon fibres as observed by x-ray small angle scattering, Yogyo-Kyokai-Shi 86(4),186 (1978).

    Article  CAS  Google Scholar 

  26. I. Tomizuka, T. Kurita, Y. Tanaka, and O. Watanabe, Voids in the carbon fibers produced from lignin and PVA, Yogyo-Kyokai-Shi 79(12), 460 (1971).

    Article  CAS  Google Scholar 

  27. K. Sudo and K. Shimizu, A new carbon-fiber from lignin, J. Appl. Polym. Sci. 44(1),127–134 (1992).

    Article  CAS  Google Scholar 

  28. K. Sudo, M. Okoshi, and K. Shimizu, Carbon-fiber from lignin--improvement of conversion process of lignin, Abstracts of Papers of the American Chemical Society, 195, 107-CELL (1988).

    Google Scholar 

  29. K. Sudo, K. Shimizu, N. Nakashima, and A. Yokoyama, A new modification method of exploded lignin for the preparation of a carbon-fiber precursor, J. Appl. Polym. Sci. 48(8),1485–1491 (1993).

    Article  CAS  Google Scholar 

  30. K. Sudo and K. Shimizu, Method for manufacturing lignin for carbon fiber spinning, U.S Patent: 5,344,921 (1994).

    Google Scholar 

  31. S. Kubo, N. Ishikawa, Y. Uraki, and Y. Sano, Preparation of lignin fibers from softwood acetic acid lignin - Relationship between fusibility and the chemical structure of lignin, Mokuzai Gakkaishi 43(8), 655–662 (1997).

    CAS  Google Scholar 

  32. S. Kubo, Y. Uraki, and Y. Sano, Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping, Carbon 36(7–8), 1119–1124 (1998).

    Article  CAS  Google Scholar 

  33. Y. Uraki, S. Kubo, N. Nigo, Y. Sano, and T. Sasaya, Preparation of carbon-fibers from Organosolv lignin obtained by aqueous acetic-acid pulping, Holzforschung 49(4), 343–350 (1995).

    Article  CAS  Google Scholar 

  34. K. Itoh, Prepareation of lignin fiber, Japanese Patent: H1239114 (1989)

    Google Scholar 

  35. J. F. Kadla, S. Kubo, R. D. Gilbert, R. A. Venditti, W. Griffith, and A. L. Compere, Lignin-based carbon fibers for composite fiber applications, submitted to Carbon (2001).

    Google Scholar 

  36. E. Corradini, E. A. G. Pineda, and A. A. W. Hechenleitner, Lignin-poly (vinyl alcohol) blends studied by thermal analysis, Polym. Degrad. Stab. 66(2), 199–208 (1999).

    Article  CAS  Google Scholar 

  37. Y. Lui, S. Carnero, K. Pye, and D. Argyropoulos, A comparison of the structural changes occurring in lignin during alcell and kraft pulping of hardwoods and softwoods, in: Lignin: Historical, Biological, and Materials Perspectives, edited by R. A. Northey, W. G. Glasser, and T. P. Schultz (ACS Symposium Series 742, American Chemical Society, Washington, D.C., 2000), p. xv, 559.

    Google Scholar 

  38. E. K. Pye and J. H. Lora, The Alcell Process - a proven alternative to kraft pulping, Tappi J 74(3), 113–118 (1991).

    CAS  Google Scholar 

  39. J. F. Kadla, S. Kubo, R. A. Venditti, and R. D. Gilbert, Lignin-based thermoplastics: Effect of intermolecular interactions on polymer blends, Polymer Preprints - PMSE (2001).

    Google Scholar 

  40. J. K. Gillham and J. B. Enns, On the cure properties of thermosetting polymers using torsional braid analysis, Trends in Polymer Science 2(12), 406–419 (1994).

    CAS  Google Scholar 

  41. G. Wisanrakkit and J. K. Gillham, Continuous heating transformation (CHT) cure diagram of an aromatic amine epoxy system at constant heating rates, J. Appl. Polym. Sci. 42(9), 2453–2463 (1991).

    Article  CAS  Google Scholar 

  42. J.-B. Donnet and R. C. Bansal, Carbon Fibers (International fiber science and technology series, Marcel Dekker, New York, 1984), v. 3. p. 291.

    Google Scholar 

  43. S. Y. Lin and C. W. Dence, Methods in Lignin Chemistry (Springer series in wood science, Springer-Verlag, Berlin, 1992).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kadla, J.F., Kubo, S., Gilbert, R.D., Venditti, R.A. (2002). Lignin-Based Carbon Fibers. In: Hu, T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0643-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5173-3

  • Online ISBN: 978-1-4615-0643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics