Skip to main content
Log in

Material Properties and Statistical Analysis of Natural Rubber-Based Adhesives

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Material properties of epoxidized natural rubber (ENR 50)-based adhesive were determined using DSC, TGA and FTIR analysis which was prepared using gum rosin and toluene as tackifier and solvent respectively. Quadratic regression was fitted to model the effect of peel strength and shear strength of the adhesives. Result shows that peel and shear strength increases up to an optimum molecular weight of 4.2 × 104 g/mol of ENR 50. Peel strength and shear strength also increases with increase in rate of testing, an observation which is associated to the viscoelastic response of the adhesive. Statistical analysis was carried out to further investigate the effect of molecular weight and testing rate on peel and shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

ENR:

Epoxidized natural rubber

NR:

Natural rubber

PET:

Polyethylene terephthalate

PVP:

Poly (vinylpyrrolidone)

PSA:

Pressure-sensitive adhesive

References

  1. Aubrey DW, Sherriff M (1980) Peel adhesion and viscoelasticity of rubber–resin blends. J Polym Sci Pol Chem 18:2597–2608

    Article  CAS  Google Scholar 

  2. Sherriff M, Knibbs RW, Langley PG (1973) Mechanism for the action of tackifying resins in pressure-sensitive adhesives. J Appl Polym Sci 17:3423–3438

    Article  CAS  Google Scholar 

  3. Hata T, Tsukatani T, Mizumachi H (1994) Holding power (tb) and sliding friction coefficient of pressure sensitive adhesives. J Adhes Soc Jpn 30:307–312

    CAS  Google Scholar 

  4. Khan I, Poh BT (2012) Material properties and influence of molecular weight and testing rate on adhesion properties of epoxidized natural rubber-based adhesives. J Polym Environ 20:132–141

    Article  CAS  Google Scholar 

  5. Khan I, Poh BT (2011) Effect of molecular weight and testing rate on peel and shear strength of epoxidized natural rubber (ENR 50)-based adhesives. J Appl Polym Sci 120:2641–2647

    Article  CAS  Google Scholar 

  6. Khan I, Poh BT (2011) Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber. Mater Des 32:2513–2519

    Article  CAS  Google Scholar 

  7. Lanrock A (1985) Adhesive technology hand book. Noyes Publishing, Park Ridge

    Google Scholar 

  8. Allen KW (1987) A review of contemporary views of theories of adhesion. J Adhes 21:261–277

    Article  CAS  Google Scholar 

  9. Khan I, Poh BT (2011) Natural rubber-based pressure-sensitive adhesives: a review. J Polym Environ 19:793–811

    Article  CAS  Google Scholar 

  10. Dahlquist CA (1989) Pressure sensitive adhesive technology, vol Chapter 20, 2nd edn. Van Nostrand Reinhold, New York

  11. Kim H-J, Mizumachi H (1995) Miscibility and peel strength of acrylic pressure-sensitive adhesives: acrylic copolymer–tackifier resin systems. J Appl Polym Sci 56:201–209

    Article  CAS  Google Scholar 

  12. Whitehouse RS, Counsell PJC, Lewis G (1976) Composition of rubber/resin adhesive films: 1. Surface composition as determined by ATR spectroscopy. Polymer 17:699–704

    Article  CAS  Google Scholar 

  13. Pal K, Pal SK, Das CK, Kim JK (2011) Effect of fillers on morphological properties and wear characteristics of XNBR/NR blends. J Appl Polym Sci 120:710–718

    Article  CAS  Google Scholar 

  14. Saito T, Klinklai W, Kawahara S (2007) Characterization of epoxidized natural rubber by 2D NMR spectroscopy. Polymer 48:750–757

    Article  CAS  Google Scholar 

  15. Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear. Mater Des 31:677–686

    Article  CAS  Google Scholar 

  16. Vatansever N, Polat S (2010) Effect of zinc oxide type on ageing properties of styrene butadiene rubber compounds. Mater Des 31:1533–1539

    Article  CAS  Google Scholar 

  17. Pal K, Rajasekar R, Kang DJ, Zhang ZX, Pal SK, Das CK, Kim JK (2010) Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica: morphology and wear. Mater Des 31:1156–1164

    Article  CAS  Google Scholar 

  18. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  19. Vidal A, Haidar B (2007) Filled elastomers: characteristics and properties of interfaces and interphases, and their role in reinforcement processes. Soft Mater 5:155–167

    Article  CAS  Google Scholar 

  20. Khan I, Poh BT (2010) Effect of silica on viscosity, tack, and shear strength of epoxidized natural rubber-based pressure-sensitive adhesives in the presence of coumarone-indene resin. J Appl Polym Sci 118:3439–3444

    Article  CAS  Google Scholar 

  21. Khan I, Poh BT, Badriah CM (2011) Effect of sodium sulfate on the viscosity, tack, and adhesion properties of SMR 10-based pressure-sensitive adhesive. J Elastom Plast 43:85–95

    Article  CAS  Google Scholar 

  22. Khan I, Poh BT (2010) The effect of silica on the peel adhesion of epoxidized natural rubber-based adhesive containing coumarone- indene resin. Polym Plast Technol 49:1356–1360

    Article  CAS  Google Scholar 

  23. Billmeyer FW (1984) Textbook of polymer science, 3rd edn. Wiley, New York, p 208

    Google Scholar 

  24. Bateman L (1963) The chemistry and physics of rubber-like substances. Maclaren Ed, London, p 149

    Google Scholar 

  25. Brandrup J, EHI, Grulke EA (2005) Soultion properties, section VII. In: Polymer handbook, 4th edn. Wiley, New York

  26. ASTM D907-03 (2004) Terminology of adhesives. Annual book of ASTM standards, vol 15.06. American Society for Testing and Materials, Philadelphia

  27. Satas D (1982) Handbook of pressure sensitive adhesive technology. Van Nostrand Reinhold, New York, p 54

    Google Scholar 

  28. Lee LH (1991) Adhesive bonding, vol 19. Plenum Press, New York

    Book  Google Scholar 

  29. Skeist I (1990) Handbook of adhesives, 3rd edn. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  30. Satas D (1989) Handbook of pressure sensitive adhesive technology. In: Satas I (ed) Van Nostrand Reinhold, New York, p 61

  31. Somanathan N, Sanjay A, Arumugam V (2002) Compatibility studies on polystyrene and poly-n-butyl methacrylate. J Appl Polym Sci 83:2322–2330

    Article  CAS  Google Scholar 

  32. Hayashi S, Kim HJ, Kajiyama M, Ono H, Mizumachi H, Zufu Z (1999) Miscibility and pressure-sensitive adhesive performances of acrylic copolymer and hydrogenated rosin systems. J Appl Polym Sci 71:651–663

    Article  CAS  Google Scholar 

  33. Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  34. Zerjal B, Jelcic Z, Malavasic T (1996) Miscibility in thermoplastic polyurethane elastomer/poly(styrene-co-acrylonitrile) blends. Eur Polym J 32:1351–1354

    Article  CAS  Google Scholar 

  35. Song M, Hammiche A, Pollock HM, Hourston DJ, Reading M (1995) Modulated differential scanning calorimetry: 1. A study of the glass transition behaviour of blends of poly(methyl methacrylate) and poly(styrene-co-acrylonitrile). Polymer 36:3313–3316

    Article  CAS  Google Scholar 

  36. Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  37. Noriman NZ, Ismail H, Rashid AA (2010) Characterization of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends: the effects of epoxidized natural rubber (ENR-50) as a compatibilizer. Polym Tes 29:200–208

    Article  CAS  Google Scholar 

  38. Poh BT, Giam YF, Yeong FPA (2010) Tack and shear strength of adhesives prepared from styrene-butadiene rubber (SBR) using gum rosin and petro resin as tackifiers. J Adhes 86:846–858

    Article  Google Scholar 

  39. Gardon JL (1963) Peel adhesion. II. A theoretical analysis. J Appl Polym Sci 7:643–665

    Article  CAS  Google Scholar 

  40. Gardon JL (1963) Peel adhesion. I. Some phenomenological aspects of the test. J Appl Polym Sci 7:625–641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research grant (FRGS) provided by Universiti Sains Malaysia that has resulted in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan.

Appendix

Appendix

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.

Table 4 ANOVA table for peel strength (90° Test) with molecular weight for various testing rate for 10, 30 and 50 phr of gum rosin at the coating thickness of 120 μm
Table 5 ANOVA table for peel strength (T Test) with molecular weight for various testing rate for 10, 30 and 50 phr of gum rosin at the coating thickness of 120 μm
Table 6 ANOVA table for shear strength with molecular weight for various testing rate for 10, 30 and 50 phr of gum rosin at the coating thickness of 120 μm
Table 7 Tukey multiple comparisons of peel strength (90° Test) with molecular weight for various testing rate for 10 phr of gum rosin at the coating thickness of 120 μm
Table 8 Tukey multiple comparisons of peel strength (90° Test) with molecular weight for various testing rate for 30 phr of gum rosin at the coating thickness of 120 μm
Table 9 Tukey test (20 and 40 cm/min) and Tamhane’s T2 (10, 30 and 50 cm/min) multiple comparisons of peel strength (90° Test) with molecular weight for various testing rate for 30 phr of gum rosin at the coating thickness of 120 μm
Table 10 Tukey multiple comparison of peel strength (T Test) with molecular weight for various testing rate for 10 phr of gum rosin at the coating thickness of 120 μm
Table 11 Tukey (10, 20, 30 and 50) and Tamhane’s T2 (40) multiple comparisons of peel strength (T Test) with molecular weight for various testing rate for 30 phr of gum rosin at the coating thickness of 120 μm
Table 12 Tukey multiple comparisons of peel strength (T Test) with molecular weight for various testing rate for 50 phr of gum rosin at the coating thickness of 120 μm
Table 13 Tukey multiple comparisons of shear strength with molecular weight for various testing rate for 10 phr of gum rosin at the coating thickness of 120 μm
Table 14 Tukey multiple comparisons of shear strength with molecular weight for various testing rate for 30 phr of gum rosin at the coating thickness of 120 μm
Table 15 Tukey (10, 30, 40 and 50 cm/min) and Tamhane’s T2 (20 cm/min) multiple comparisons of shear strength with molecular weight for various testing rate for 30 phr of gum rosin at the coating thickness of 120 μm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, I., Poh, B.T. & Lee, K.E. Material Properties and Statistical Analysis of Natural Rubber-Based Adhesives. J Polym Environ 21, 833–849 (2013). https://doi.org/10.1007/s10924-012-0559-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0559-6

Keywords

Navigation