Skip to main content
Log in

Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we intend to establish fast numerical approaches to solve a class of initial-boundary problem of time-space fractional convection–diffusion equations. We present a new unconditionally stable implicit difference method, which is derived from the weighted and shifted Grünwald formula, and converges with the second-order accuracy in both time and space variables. Then, we show that the discretizations lead to Toeplitz-like systems of linear equations that can be efficiently solved by Krylov subspace solvers with suitable circulant preconditioners. Each time level of these methods reduces the memory requirement of the proposed implicit difference scheme from \({\mathcal {O}}(N^2)\) to \({\mathcal {O}}(N)\) and the computational complexity from \({\mathcal {O}}(N^3)\) to \({\mathcal {O}}(N\log N)\) in each iterative step, where N is the number of grid nodes. Extensive numerical examples are reported to support our theoretical findings and show the utility of these methods over traditional direct solvers of the implicit difference method, in terms of computational cost and memory requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In this case, it should mention that we only need to solve three nonsymmetric Toeplitz systems, i.e., equations with the form like (3.5) and in Step 4 of Algorithm 3, for implementing the whole for loop.

  2. For the sake of clarity, here we do not list the number of iterations required for solving those three linear systems one by one.

References

  1. Podlubny, I.: Fractional Differential Equations, vol. 198 of Mathematics in Science. Academic Press Inc., San Diego (1999)

    Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdonn (1993)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997). doi:10.1063/1.166272

    Article  MathSciNet  MATH  Google Scholar 

  6. Povstenko, Y.: Space-time-fractional advection diffusion equation in a plane. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-Integer-Order Systems. Volume 320 of the Series Lecture Notes in Electrical Engineering, pp. 275–284. Springer, New York (2015)

    Google Scholar 

  7. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  8. Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection–diffusion equations. Adv. Water Resour. 34, 810–816 (2011)

    Article  Google Scholar 

  9. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Povstenko, Y.Z.: Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables. Math. Probl. Eng. (2014). doi:10.1155/2014/705364

    MathSciNet  Google Scholar 

  11. Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, W.-H., Huang, T.-Z., Wu, G.-C., Gu, X.-M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)

    MathSciNet  Google Scholar 

  14. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Su, L., Wang, W., Yang, Z.: Finite difference approximations for the fractional advection–diffusion equation. Phys. Lett. A 373, 4405–4408 (2009)

    Article  MATH  Google Scholar 

  20. Sousa, E.: Finite difference approximations for a fractional advection–diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Su, L., Wang, W., Wang, H.: A characteristic difference method for the transient fractional convection–diffusion equations. Appl. Numer. Math. 61, 946–960 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deng, Z., Singh, V., Bengtsson, L.: Numerical solution of fractional advection–dispersion equation. J. Hydraul. Eng. 130, 422–431 (2004)

    Article  Google Scholar 

  23. Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905–1914 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Momani, S., Rqayiq, A.A., Baleanu, D.: A nonstandard finite difference scheme for two-sided space-fractional partial differential equations. Int. J. Bifurcat. Chaos 22(1250079), 5 (2012). doi:10.1142/S0218127412500794

    MathSciNet  MATH  Google Scholar 

  26. Chen, M., Deng, W.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. 38, 3244–3259 (2014)

    Article  MathSciNet  Google Scholar 

  27. Deng, W., Chen, M.: Efficient numerical algorithms for three-dimensional fractional partial differential equations. J. Comput. Math. 32, 371–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qu, W., Lei, S.-L., Vong, S.-W.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ford, N.J., Pal, K., Yan, Y.: An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Comput. Methods Appl. Math. 15, 497–514 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection–diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, W.Y., Deng, W., Wu, Y.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30, 514–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cui, M.: A high-order compact exponential scheme for the fractional convection–diffusion equation. J. Comput. Appl. Math. 255, 404–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithms 63, 431–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Momani, S.: An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)

    Article  MathSciNet  Google Scholar 

  41. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int. J. Numer. Methods Eng. 88, 1346–1362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.-M.: A compact finite difference method for solving a class of time fractional convection–subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524–529 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Y.: Finite difference approximations for space-time fractional partial differential equation. J. Numer. Math. 17, 319–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shao, Y., Ma, W.: Finite difference approximations for the two-side space-time fractional advection–diffusion equations. J. Comput. Anal. Appl. 21, 369–379 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Qin, P., Zhang, X.: A numerical method for the space-time fractional convection–diffusion equation. Math. Numer. Sin. 30, 305–310 (2008). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  49. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, Z., Jin, X.-Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection–diffusion equations. J. Comput. Phys. 319, 266–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms 56, 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection–diffusion equation with a nonlinear source term. Numer. Algorithms 68, 601–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen, Y., Wu, Y., Cui, Y., Wang, Z., Jin, D.: Wavelet method for a class of fractional convection–diffusion equation with variable coefficients. J. Comput. Sci. 1, 146–149 (2010)

    Article  Google Scholar 

  54. Irandoust-pakchin, S., Dehghan, M., Abdi-mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)

    Article  MathSciNet  Google Scholar 

  55. Bhrawy, A.H., Zaky, M.A., Tenreiro-Machado, M.A.: Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection–dispersion equation. J. Vib. Control 22, 2053–2068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hejazi, H., Moroney, T., Liu, F.: A finite volume method for solving the two-sided time-space fractional advection–dispersion equation. Cent. Eur. J. Phys. 11, 1275–1283 (2013)

    Google Scholar 

  57. Jiang, W., Lin, Y.: Approximate solution of the fractional advection–dispersion equation. Comput. Phys. Commun. 181, 557–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wei, J., Chen, Y., Li, B., Yi, M.: Numerical solution of space-time fractional convection–diffusion equations with variable coefficients using Haar wavelets. Comput. Model. Eng. Sci. (CMES) 89, 481–495 (2012)

    MATH  Google Scholar 

  59. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  60. Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogues. Matem. Issled. 7, 201–223 (1972). (in Russian)

    MATH  Google Scholar 

  63. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  64. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hao, Z.-P., Sun, Z.-Z., Cao, W.-R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vong, S., Lyu, P., Chen, X., Lei, S.-L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Björck, Å.: Numerical Methods in Matrix Computations, volume 59 of the series Texts in Applied Mathematics. Springer, Switzerland (2014)

  68. Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Gu, X.-M., Huang, T.-Z., Li, H.-B., Li, L., Luo, W.-H.: On \(k\)-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Appl. Math. Lett. 42, 53–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Prof. Zhi-Zhong Sun and Dr. Zhao-Peng Hao for their insightful discussions about the convergence analysis of the proposed implicit difference scheme. The authors are also grateful to the anonymous referees for their useful suggestions and comments that improved the presentation of this paper. The work of Gu and Huang is supported by 973 Program (2013CB329404), NSFC (61370147 and 61402082), the Fundamental Research Funds for the Central Universities (ZYGX2014J084). Ji’s work is supported by the Fundamental Research Funds for the Central Universities and the Research and Innovation Project for College Graduates of Jiangsu Province (Grant No. KYLX15_0106). The work of the last author has been partially implemented with the financial support of the Russian Presidential grant for young scientists MK-3360.2015.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Zhu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XM., Huang, TZ., Ji, CC. et al. Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. J Sci Comput 72, 957–985 (2017). https://doi.org/10.1007/s10915-017-0388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0388-9

Keywords

Mathematics Subject Classification

Navigation