Skip to main content
Log in

Nonconforming Least-Squares Method for Elliptic Partial Differential Equations with Smooth Interfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper a least-squares based method is proposed for elliptic interface problems in two dimensions, where the interface is smooth. The underlying method is spectral element method. The least-squares formulation is based on the minimization of a functional as defined in (4.1). The jump in the solution and its normal derivative across the interface are enforced (in an appropriate Sobolev norm) in the functional. The solution is obtained by solving the normal equations using preconditioned conjugate gradient method. Essentially the method is nonconforming, so a block diagonal matrix is constructed as a preconditioner based on the stability estimate where each diagonal block is decoupled. A conforming solution is obtained by making a set of corrections to the nonconforming solution as in Schwab (p and hp Finite Element Methods, Clarendon Press, Oxford, 1998) and an error estimate in H 1-norm is given which shows the exponential convergence of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuska, I., Guo, B.: The hp version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal. 25(4), 837–861 (1998)

    Article  MathSciNet  Google Scholar 

  3. Barrett, J.W., Elliott, C.M.: Fitted and unfitted finite element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berndt, M., Manteuffel, T.A., McCormick, S.F., Starke, G.: Analysis of first-order system least-squares (FOSLS) for elliptic problems with discontinuous coefficients, Part I. SIAM J. Numer. Anal. 43(1), 386–408 (1995)

    Article  MathSciNet  Google Scholar 

  5. Berndt, M., Manteuffel, T.A., McCormick, S.F.: Analysis of first-order system least-squares (FOSLS) for elliptic problems with discontinuous coefficients, Part II. SIAM J. Numer. Anal. 43(1), 409–436 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  7. Bochev, P.V., Gunzburger, M.D.: Least-squares finite element methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  8. Cao, Y., Gunzburger, M.D.: Least-squares finite element approximations to solutions of interface problems. SIAM J. Numer. Anal. 35(1), 393–405 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dutt, P., Kishore Kumar, N., Upadhyay, C.S.: Nonconforming hp spectral element methods for elliptic problems. Proc. Indian Acad. Sci. Math. Sci. 117, 109–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dutt, P., Biswas, P., Naga Raju, G.: Preconditioners for spectral element methods for elliptic and parabolic problems. J. Comput. Appl. Math. 215(1), 152–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galvao, A., Gerritsma, M.I., De Maercshalck, B.: hp-Adaptive least-squares spectral element method for hyperbolic partial differential equations. J. Comput. Appl. Math. 215(2), 409–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerritsma, M.I., Proot, M.J.: Analysis of a discontinuous least-squares spectral element method. J. Sci. Comput. 17(1–4), 297–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gong, Y., Li, B., Li, Z.: Immersed-interface finite element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal. 46(1), 472–495 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gordan, W.J., Hall, C.A.: Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer. Math. 21(2), 109–129 (1973)

    Article  MathSciNet  Google Scholar 

  15. Guyomarch, G., Lee, C.O.: A discontinuous Galerkin method for elliptic interface problems with application to electroporation. Commun. Numer. Methods Eng. 25(10), 991–1008 (2008)

    Article  MathSciNet  Google Scholar 

  16. Huang, J., Zou, J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22, 549–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kellogg, R.B.: Singularities in interface problems. In: Hubbard, B. (ed.) Numerical Solution of Partial Differential Equations II. Academic Press, New York (1971)

    Google Scholar 

  18. Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4, 101–129 (1975)

    Article  MathSciNet  Google Scholar 

  19. Kishore Kumar, N., Dutt, P., Upadhyay, C.S.: Nonconforming spectral/hp element methods for elliptic systems. J. Numer. Math. 17(2), 119–142 (2009)

    MathSciNet  Google Scholar 

  20. Kishore Kumar, N., Naga Raju, G.: Least-squares hp/spectral element method for elliptic problems. Appl. Numer. Math. 60, 38–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamichhane, B.P., Wohlmuth, B.I.: Mortar finite elements for interface problems. Computing 72, 333–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Z., Ito, K.: The immersed interface method: Numerical solutions of PDEs involving interfaces and irregular domains. Frontiers Appl. Math., vol. 33. Philadelphia, SIAM (2006)

    Google Scholar 

  24. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problem using finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite element methods for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massjung, R.: An hp-error estimate for an unfitted discontinuous Galerkin method applied to elliptic interface problems. http://www.ipgm.rwth-aachen.de/Download/reports/pdf/IGPM300_k.pdf (2009)

  27. Schwab, Ch.: p and hp Finite Element Methods. Clarendon Press, Oxford (1998)

    Google Scholar 

  28. Tomar, S.K.: hp spectral element method for elliptic problems on non-smooth domains using parallel computers. Computing 78, 117–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tomar, S.K.: hp spectral element method for elliptic problems on non-smooth domains using parallel computers, Ph.D. thesis, IIT Kanpur, India (2001). Reprint available as Tech. rep. No. 1631, Department of Applied Mathematics, University of Twente, The Netherlands. http://doc.utwente.nl/65818/

  30. Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: Finite difference methods for PDES with piecewise smooth solutions. SIAM J. Numer. Anal. 37(3), 827–862 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kishore Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishore Kumar, N., Naga Raju, G. Nonconforming Least-Squares Method for Elliptic Partial Differential Equations with Smooth Interfaces. J Sci Comput 53, 295–319 (2012). https://doi.org/10.1007/s10915-011-9572-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9572-5

Keywords

Navigation