Skip to main content
Log in

Local Convergence of the Lavrentiev Method for the Cauchy Problem via a Carleman Inequality

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The purpose is to perform a sharp analysis of the Lavrentiev method applied to the regularization of the ill-posed Cauchy problem, set in the Steklov-Poincaré variational framework. Global approximation results have been stated earlier that demonstrate that the Lavrentiev procedure yields a convergent strategy. However, no convergence rates are available unless a source condition is assumed on the exact Cauchy solution. We pursue here bounds on the approximation (bias) and the noise propagation (variance) errors away from the incomplete boundary where instabilities are located. The investigation relies on a Carleman inequality that enables enhanced local convergence rates for both bias and variance errors without any particular smoothness assumption on the exact solution. These improved results allows a new insight on the behavior of the Lavrentiev solution, look similar to those established for the Quasi-Reversibility method in [Inverse Problems 25, 035005, 2009]. There is a case for saying that this sort of ‘super-convergence’ is rather inherent to the nature of the Cauchy problem and any reasonable regularization procedure would enjoy the same locally super-convergent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Azaïez, M., Ben Belgacem, F., El Fekih, H.: On Cauchy’s problem. II. Completion, regularization and approximation. Inverse Probl. 22, 1307–1336 (2006)

    Article  MATH  Google Scholar 

  3. Azaïez, M., Ben Belgacem, F., Du, D.T., Jelassi, F.: A finite element model for the data completion problem: Analysis and assessment. Inverse Probl. Sci. Eng. 19, 1063–1086 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Belgacem, F.: Why is the Cauchy’s problem severely ill-posed? Inverse Probl. 23, 823–836 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Belgacem, F., El Fekih, H.: On Cauchy’s problem. I. A variational Steklov-Poincaré theory. Inverse Probl. 21, 1915–1936 (2005)

    Article  MATH  Google Scholar 

  6. Ben Belgacem, F., Du, D.T., Jelassi, F.: Extended-domain-Lavrentiev’s regularization for the Cauchy problem. Inverse Probl. 27, 045005 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ben Belgacem, F., El Fekih, H., Jelassi, F.: The Lavrentiev regularization of the data completion problem. Inverse Probl. 24, 045009 (2008)

    Article  Google Scholar 

  8. Bourgeois, L.: Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Probl. 22, 413–430 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgeois, L.: About stability and regularization of ill-posed elliptic Cauchy problems: The case of C 1,1 domains. Modél. Math. Anal. Numér. 44, 715–735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brühl, M., Hanke, M., Pidcock, M.: Crack detection using electrostatic measurements. Modél. Math. Anal. Numér. 35, 595–605 (2001)

    Article  MATH  Google Scholar 

  11. Cao, H., Klibanov, M.V., Pereverzev, S.V.: A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation. Inverse Probl. 25, 035005 (2009)

    Article  MathSciNet  Google Scholar 

  12. Colli Franzone, P., Magenes, E.: On the inverse potential problem of electrocardiology. Calcolo 16, 459–538 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dauge, M.: Elliptic Boundary Value Problems in Corner Domains. Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

    Google Scholar 

  14. Du, D.T.: A Lavrentiev finite element model for the Cauchy problem of data completion: Analysis and numerical assessment. Ph.D. Thesis, Université de Technologie de Compiègne (March, 2011)

  15. Du, D.T., Jelassi, F.: A preconditioned Richardson regularization for the data completion problem and the Kozlov-Maz’ya-Fomin method. ARIMA 13, 17–32 (2010)

    MathSciNet  Google Scholar 

  16. Friedman, A., Vogelius, M.S.: Determining cracks by boundary measurements. Indiana Univ. Math. J. 38, 527–556 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fursikov, A., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. RIM-GARC, Seoul National University, Seoul (1996)

    MATH  Google Scholar 

  18. Groetsch, C.W.: Comments on Morozov’s discrepancy principle. In: Hämmerlin, G., Hoffmann, K.H. (eds.) Improperly Posed Problems and Their Numerical Treatment, pp. 97–104. Birkhäuser, Basel (1983)

    Google Scholar 

  19. Hofmann, B., Mathé, P., Von Weizsacker, H.: Regularization in Hilbert space under unbounded operators and general source conditions. Inverse Probl. 25, 115013 (2009)

    Article  Google Scholar 

  20. Janno, J., Tautenhahn, U.: On Lavrentiev regularization for ill-posed problems in Hilbert scales. Numer. Funct. Anal. Optim. 24, 531–555 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kohn, R.V., Vogelius, M.S.: Determining conductivity by boundary measurements. II. Interior results. Commun. Pure Appl. Math. 38, 643–667 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics. Springer, New York (1967)

    Book  MATH  Google Scholar 

  23. Mathé, P., Hofmann, B.: How general are general source conditions? Inverse Probl. 24, 015009 (2008)

    Article  Google Scholar 

  24. Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1966)

    MATH  Google Scholar 

  25. Nair, M.T., Tautenhahn, U.: Lavrentiev regularization for linear ill-posed problems under general source conditions. J. Anal. Appl. 23, 167–185 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Tataru, D.: A-priori estimates of Carleman’s type in domains with boundary. J. Math. Pures Appl. 73, 355–387 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faker Ben Belgacem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Belgacem, F., Du, D.T. & Jelassi, F. Local Convergence of the Lavrentiev Method for the Cauchy Problem via a Carleman Inequality. J Sci Comput 53, 320–341 (2012). https://doi.org/10.1007/s10915-011-9571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9571-6

Keywords

Navigation