1 Introduction

Consider

$$\begin{aligned} P=-D_t^2+A_2(t, x, D)+A_0(t, x, D)D_t+A_1(t, x, D) \end{aligned}$$
(1.1)

where \(A_j(t, x, D)\) are differential operators of order j depending smoothly on t, having the principal symbol

$$\begin{aligned} p(t, x, \tau , \xi )=-\tau ^2+a(t, x, \xi ) \end{aligned}$$

where \(a(t, x, \xi )\) is positively homogeneous of degree 2 in \(\xi \) and nonnegative for any \((t, x, \xi )\in U\times {{\mathbb {R}}}^d\) with some neighborhood U of \((0, 0)\in {{\mathbb {R}}}^{d+1}\).

In [6], Ivrii and Petkov proved that if the Cauchy problem for P is \(C^{\infty }\) well posed for any lower order term then every critical point of \(p=0\) is effectively hyperbolic, namely the Hamilton map has a pair of non-zero real eigenvalues there. In [7], Ivrii has proved that if every critical point is effectively hyperbolic and p admits a decomposition \(p=q_1q_2\) nearby with real smooth symbols \(q_i\) vanishing at the reference point, then the Cauchy problem is \(C^{\infty }\) well-posed for every lower order term, transforming the original P by operator powers of operator to one with a suitable lower order term for which a standard energy method can be applied, and has conjectured that this is true without any restriction.

If a critical point \((t, x, \tau , \xi )\) is effectively hyperbolic then \(\tau \) is a characteristic root of multiplicity at most 3 ([6, Lemma 8.1]) and if every multiple characteristic root is at most double, the conjecture has been proved in [9,10,11, 16, 17]. In [9, 10] the proof is based on the reduction of the original P to an operator for which an improved version of the method of [7] can be applied, where the reduction is made applying the Nash-Moser implicit function theorem. On the other hand, in [16] (see also [19]) the proof is based on energy estimates with pseudodifferential weights of which symbol comes from a geometric characterization of effectively hyperbolic characteristic points, after some preliminary transformations by Fourier integral operators, while in [20] another way to obtain microlocal energy estimates without the use of Fourier integral operators was given, where the original P is transformed by Gevrey pseudodifferential operators on the (tx)-space to one with symbol extended in the complex directions, to which one can apply the classical separating operator method.

In this paper, we propose a simpler derivation of energy estimates and proof of the well-posedness of the Cauchy problem for effectively hyperbolic operators. Although we follow [19] mainly, one difference is that instead of using the general Fourier integral operator when transforming the operator, we only use a change of local coordinates x (of the configuration space which extends as a linear transformation outside a compact set) leaving the time variable invariant. This allows us to simplify the analysis of deducing the result for the original operator from that obtained for the transformed operator. Another difference is the application of Weyl-Hörmander calculus of pseudodifferential operators associated with several different metrics. The method has been used in a naive way in [19], but here we aim to organize the approach thoroughly. As a result, the argument to derive energy estimates for localized operators is made simpler and clearer and so is the proof of the local existence and uniqueness of the solution to the original Cauchy problem.

For the Cauchy problem for operators with triple effectively hyperbolic characteristics, where p cannot be smoothly factorized, see [22] and the references given there.

2 Geometric characterization of effectively hyperbolic characteristics

In this section, we prove the following proposition, which provides a geometric characterization of effectively hyperbolic characteristics ([18, Lemmas 3.1, 3.2], [19, Section 2.1]).

Proposition 2.1

Assume that \((0, 0, 0, {\bar{\xi }})\) is effectively hyperbolic. One can choose a local coordinates x around \(x=0\) such that \({\bar{\xi }}=e_d=(0,\ldots , 0, 1)\) and smooth function \(\psi (x, \xi )\), positively homogeneous of degree 0 vanishing at \((0,e_d)\), such that either \(d\psi =d\xi _1\) or \(d\psi =\varepsilon dx_1+cdx_d\) at \((0, e_d)\) where \(c\in {{\mathbb {R}}}\) and \(\varepsilon =0\) or 1, and smooth \(\ell (t, x, \xi )\), \(q(t, x, \xi )\ge 0\) vanishing at \((0, 0, e_d)\), positively homogeneous of degree 1, 2 respectively such that

$$\begin{aligned} p(t, x, \tau , \xi )=-\tau ^2+\ell ^2(t, x, \xi )+q(t, x, \xi ),\quad q(t, x, \xi )\ge {{\bar{c}}}(t-\psi )^2|\xi |^2\nonumber \\ \end{aligned}$$
(2.1)

with some \({{\bar{c}}}>0\) on a conic neighborhood of \((0, 0, e_d)\) where

$$\begin{aligned} |\{\ell , \psi \}(0, 0, e_d)|<1,\quad \{\psi , \{\psi , q\}\}(0, 0, e_d)=0. \end{aligned}$$
(2.2)

The change of coordinates \(x\mapsto \chi (x)\) can be extended to a diffeomorphism on \({{\mathbb {R}}}^d\) such that \(\chi (x)\) is a linear transformation outside a neighborhood of \(x=0\).

The coordinates change is called (a) or (b) according to the resulting form \(d\psi =d\xi _1\) or \(d\psi =\varepsilon x_1+cx_d\), in each case one can write

$$\begin{aligned} \psi (x, \xi )=\xi _1/|\xi |+r(x, \xi ),\quad \psi (x, \xi )=\varepsilon x_1+cx_d+r(x, \xi ) \end{aligned}$$
(2.3)

where \(dr(0, 0, e_d)=0\). Note that \(\{\psi , \{\psi , q\}\}(0, 0, e_d)=0\) implies that

$$\begin{aligned} \partial _{x_1}^2q(0, 0, e_d)=0,\qquad \varepsilon \partial _{\xi _1}^2q(0, 0, e_d)=0 \end{aligned}$$
(2.4)

according to the case (a) or (b) since \(\partial _{\xi _j\xi _d}^2q(0, 0, d_d)=0\) by the Euler’s identity for homogeneous functions.

2.1 A key lemma

In this subsection, for typographical reason, we write \(x_0\) for t and \(\xi _0\) for \(\tau \) and denote \(x=(x_0, x')=(x_0, x_1,\ldots , x_d)\) and \(\xi =(\xi _0, \xi ')=(\xi _0, \xi _1,\ldots , \xi _d)\) so that \( p(x, \xi )=-\xi _0^2+a(x, \xi ')\). We also write \(z=(x, \xi )\), \(v=(y, \eta )\in {{\mathbb {R}}}^{d+1}\times {{\mathbb {R}}}^{d+1}=V\). Let \(\rho =(0, {\bar{\xi }})\) be a critical point of \(p=0\) and hence \({\bar{\xi }}_0=0\) and \(p(\rho )=\nabla p(\rho )=(\partial p(\rho )/\partial x, \partial p(\rho )/\partial \xi )=0\). Consider the Hamilton equation

$$\begin{aligned} \frac{d}{ds}\begin{pmatrix}x\\ \xi \end{pmatrix}=H_p(x, \xi )=\begin{pmatrix}\partial p/\partial \xi \\ -\partial p/\partial x \end{pmatrix} \end{aligned}$$

then it is clear that the linearized equation at \(\rho \) is given by

$$\begin{aligned} \frac{d}{ds}\begin{pmatrix}x\\ \xi \end{pmatrix}=\begin{pmatrix}\partial ^2p(\rho )/\partial x\partial \xi &{}\partial ^2p(\rho )/\partial \xi \partial \xi \\ -\partial ^2p(\rho )/\partial x\partial x&{}-\partial ^2p(\rho )/\partial \xi \partial x \end{pmatrix} \begin{pmatrix}x\\ \xi \end{pmatrix} \end{aligned}$$

where the half of the coefficient matrix is denoted by \(F_p(\rho )\) and called the Hamilton map (matrix) of p at \(\rho \). Denoting the quadratic (polarized) form associated with the Hesse matrix of p at \(\rho \) by Q(zv) it is clear that

$$\begin{aligned} Q(z, v)={\sigma }(z, F_p(\rho )v) \end{aligned}$$

where \(\sigma (z, v)=\langle {\xi , y}\rangle -\langle {x, \eta }\rangle \), \(z=(x, \xi )\), \(v=(y, \eta )\) is the symplectic two form on V. From the definition we see \(p(\rho +\epsilon z)=\epsilon ^2Q(z)/2+O(\epsilon ^3)\) as \(\epsilon \rightarrow 0\) and Q has the signature (r, 1) with some \(r\in {{\mathbb {N}}}\) since \(a(x, \xi ')\) is nonnegative near \(\rho '=(0, {\bar{\xi }}')\in {{\mathbb {R}}}^{d+1}\times {{\mathbb {R}}}^d\). Moreover, it follows from the Morse lemma (see, e.g. [4, Lemma C.6.2]) that one can find \(\phi _1, \ldots , \phi _r\) and g vanishing at \(\rho '\), homogeneous of degree 1, 2 in \(\xi '\) respectively, \(C^{\infty }\) in a conic neighborhood of \(\rho '\) such that \(\nabla \phi _1, \ldots , \nabla \phi _r\) are linearly independent at \(\rho '\) and \(g\ge 0\), \(\nabla ^2\,g(\rho ')=O\) and

$$\begin{aligned} a(x, \xi ')=\sum _{j=1}^{r}\phi _j^2(x, \xi ')+g(x, \xi '). \end{aligned}$$
(2.5)

With \(\phi _0=\xi _0\) it is clear \(Q(z, v)=-\langle {\nabla \phi _0, z}\rangle \langle {\nabla \phi _0, v}\rangle +\sum _{j=1}^r\langle {\nabla \phi _j, z}\rangle \langle {\nabla \phi _j, v}\rangle \). Then noticing \(\langle {\nabla \phi _j, z}\rangle =\sigma (z, H_{\phi _j})\) we see that

$$\begin{aligned} Q(z, v)=\sigma (z, F_pv) =\sigma \bigg (z, -\sigma (v, H_{\phi _0})H_{\phi _0}+\sum _{j=1}^r\sigma (v, H_{\phi _j})H_{\phi _j}\bigg ) \end{aligned}$$

and hence \(F_p v=-\sigma (v, H_{\phi _0})H_{\phi _0}+\sum _{j=1}^r\sigma (v, H_{\phi _j})H_{\phi _j}\). Therefore the kernel and the image of \(F_p\) are given by

$$\begin{aligned} \begin{aligned} \textrm{Im}F_p&=\{z\in V\mid z=\sum _{j=0}^r\alpha _jH_{\phi _j}, \alpha _j\in {{\mathbb {R}}}\},\\ \textrm{Ker}F_p&=\{z\in V\mid \sigma (z, H_{\phi _j})=0, j=0,\ldots , r\}. \end{aligned} \end{aligned}$$
(2.6)

Consider the following open convex cone in V

$$\begin{aligned} \Gamma =\{z\in V\mid Q(z)=Q(z, z)=-\xi _0^2+\sum _{j=1}^r\langle {\nabla \phi _j, z}\rangle ^2<0, \xi _0>0\} \end{aligned}$$
(2.7)

which is the connected component of \(\{z\in V\mid Q(z)\ne 0\}\) containing the positive \(\xi _0\) axis. Recall [3, Corollary 1.4.7] for which we give a more direct proof here.

Lemma 2.1

If \(F_p(\rho )\) has a nonzero real eigenvalue then \(\Gamma \cap \textrm{Im}F_p\ne \{0\}\).

Proof

Let \(\lambda \ne 0\) be a real eigenvalue and \(F_pz=\lambda z\) with \(0\ne z\in V\). Then from \(0=\sigma ((F_p-\lambda )z, v)=\sigma (z, (-F_p-\lambda )v)\) for all \(v\in V\) we see that \(F_p+\lambda \) is not surjective which proves that \(-\lambda \) is also an eigenvalue. Let \(F_pz_{\pm }=\pm \lambda z_{\pm }\), \(z_{\pm }\ne 0\) then \(z_{\pm }\in \textrm{Im}F_p\) for \(\lambda \ne 0\). Note that the signature of Q is (r, 1) with \(r\ge 1\) otherwise Q(z) would be \(-\xi _0^2\) and hence \(F_p\) has no nonzero eigenvalues. The quadratic form Q induces a quadratic form \({{\bar{Q}}}\) in \(V_0=V/\textrm{Ker}F_p\) which is non-degenerate and of Lorenz signature. If \(\sigma (z_{+}, z_{-})=0\) then \({{\bar{Q}}}\) would vanish on the 2 dimensional linear subspace of \(V_0\) spanned by \([z_{+}], [z_{-}]\) which is a contradiction. Thus with \(z=\alpha z_{+}+\beta z_{-}\in \textrm{Im}F_p\) we have

$$\begin{aligned} Q(z)=\sigma (\alpha z_{+}+\beta z_{-}, \lambda \alpha z_{+}-\lambda \beta z_{-})=-2\alpha \beta \lambda \sigma (z_{+}, z_{-}). \end{aligned}$$

Choosing \(\alpha \), \(\beta \) such that \(\alpha \beta \lambda \sigma (z_{+}, z_{-})>0\) we get \(Q(z)<0\) hence either \(z\in \Gamma \) or \(-z\in \Gamma \). \(\square \)

For a linear subspace \(S\subset V\) we denote \(S^{\sigma }=\{z\in V\mid \sigma (z, S)=0\}\) hence \((S^{\sigma })^{\sigma }=S\) and for \(0\ne z\in V\), \(\langle {z}\rangle \) stands for the line \({{\mathbb {R}}}z\). Introduce the dual cone of \(\Gamma \) with respect to \(\sigma \) defined by

$$\begin{aligned} C=\{z\in V; \sigma (z, w)\le 0, \forall w\in \Gamma \}. \end{aligned}$$

The next lemma [19, Lemma 1.1.3] is the key to the geometric characterization of effectively hyperbolic characteristics.

Lemma 2.2

Let \(\theta \) be the unit vector directed to positive \(\xi _0\) axis. The following three conditions are equivalent;

  1. (i)

    \(\Gamma \cap \textrm{Im}F_p\ne \{0\}\),

  2. (ii)

    there is a linear subspace \(H\subset V\) of codimension 1 such that \( H\cap C=\{ 0\}\) and \(\textrm{Ker}F_p+\langle {\theta }\rangle \subset H\),

  3. (iii)

    \(\Gamma \cap \textrm{Im}F_p\cap \langle {\theta }\rangle ^{\sigma }\ne \{0\}\).

Proof

First note that

$$\begin{aligned} z\in \Gamma \Longrightarrow \langle {z}\rangle ^{\sigma }\cap C=\{0\}. \end{aligned}$$
(2.8)

In fact if there were \(0\ne v\in \langle {z}\rangle ^{\sigma }\cap C\) we would have \(\sigma (v, z+w)=\sigma (v, w)\le 0\) for any small w since \(\Gamma \) is open leads to a contradiction.

\(\mathrm{(i)}\Longrightarrow \mathrm{(ii)}\). We first assume \(\theta \in \textrm{Ker}F_p+\textrm{Im}F_p\) so that \(\theta =z_1+z_2\) with \(z_1\in \textrm{Ker}F_p\) and \(z_2\in \textrm{Im}F_p\). Then \(0\ne z_2\in \Gamma \) since \(\theta \in \Gamma \) and \(\Gamma +\textrm{Ker}F_p\subset \Gamma \) and \(\Gamma \cap \textrm{Ker}F_p=\emptyset \). It is clear that \(\theta \in \langle {z_2}\rangle ^{\sigma }\) because \(\textrm{Ker}F_p\subset \langle {z_2}\rangle ^{\sigma }\) and \(z_2\in \langle {z_2}\rangle ^{\sigma }\) therefore \(H=\langle {z_2}\rangle ^{\sigma }\) is a desired subspace by (2.8).

Next consider the case \(\theta \not \in \textrm{Ker}F_p+\textrm{Im}F_p\) and hence \((\textrm{Ker}F_p+\textrm{Im}F_p)\cap \langle {\theta }\rangle =\{0\}\). Take \(0\ne w\in \Gamma \cap \textrm{Im}F_p\) then \(\textrm{Ker}F_p=(\textrm{Im}F_p)^{\sigma }\subset \langle {w}\rangle ^{\sigma }\) and \(\langle {w}\rangle ^{\sigma }\cap C=\{0\}\) by (2.8), while \(C\subset \textrm{Im}F_p\) for \(\Gamma +\textrm{Ker}F_p\subset \Gamma \) one concludes \(\textrm{Ker}F_p+\textrm{Im}F_p\not \subset \langle {w}\rangle ^{\sigma }\). Therefore we have \(\langle {w}\rangle ^{\sigma }+(\textrm{Ker}F_p+\textrm{Im}F_p)=V\) and hence \(\langle {w}\rangle ^{\sigma }\cap (\textrm{Ker}F_p+\textrm{Im}F_p)\) is of codimension 1 in \(\textrm{Ker}F_p+\textrm{Im}F_p\). Now writing \(V=(\textrm{Ker}F_p+\textrm{Im}F_p)\oplus \langle {\theta }\rangle \oplus W\) (direct sum) it is clear that \(H=(\langle {w}\rangle ^{\sigma }\cap (\textrm{Ker}F_p+\textrm{Im}F_p))\oplus \langle {\theta }\rangle \oplus W\) is a desired subspace.

\(\mathrm{(ii)}\Longrightarrow \mathrm{(iii)}\). Choose \(0\ne v\in V\) such that \(\langle {v}\rangle =H^{\sigma }\). It is clear that \(\langle {v}\rangle \subset \textrm{Im}F_p\cap \langle {\theta }\rangle ^{\sigma }\) for \(\textrm{Ker}F_p+\langle {\theta }\rangle \subset H\). Show that v or \(-v\) belongs to \(\Gamma \). If not we would have \(\langle {v}\rangle \cap \Gamma =\emptyset \) and by the Hahn-Banach theorem there were \(0\ne w\in V\) such that \(\sigma (w, z)\le 0, \forall w\in C\) and \(w\in \langle {v}\rangle ^{\sigma }=H\) which contradicts with (ii).

\(\mathrm{(iii)}\Longrightarrow \mathrm{(i)}\) is trivial. \(\square \)

2.2 Proof of Proposition 2.1

In this subsection we return to the original notation and write t for \(x_0\) and \(\tau \) for \(\xi _0\) and denote \(x=(x_1,\ldots , x_d)\), \(\xi =(\xi _1,\ldots , \xi _d)\). After a suitable linear change of local coordinates x we may assume that \({\bar{\xi }}=(0, \ldots , 0, 1)=e_d\). We write \(\rho '=(0, 0, e_d)\in {{\mathbb {R}}}^{d+1}\times {{\mathbb {R}}}^d\) and \(\rho ''=(0, e_d)\in {{\mathbb {R}}}^d\times {{\mathbb {R}}}^d\). Thanks to Lemma 2.2 one can take \(0\ne z\in \Gamma \cap \textrm{Im}F_p\cap \langle {\theta }\rangle ^{\sigma }\) where \(z=\sum _{j=1}^r\alpha _jH_{\phi _j}(\rho )+\alpha _0H_{\phi _0}(\rho )\) in view of (2.6), where we see \(\alpha _0=-\sigma (z, \theta )=0\) for \(z\in \langle {\theta }\rangle ^{\sigma }\). Let

$$\begin{aligned} f(t, x, \xi )=\sum _{j=1}^r\alpha _j\phi _j(t, x, \xi )/|\xi |. \end{aligned}$$

Since \(H_{f}(\rho ')=z\in \Gamma \) it is clear that \(\partial f/\partial t< 0\) at \(\rho '\) in view of (2.7) then one can write \( f(t, x, \xi )=e(t, x, \xi )(t-\psi (x, \xi ))\) where \(e(\rho ')< 0\). It is clear from (2.5)

$$\begin{aligned} a(t, x, \xi )\ge c_1(t-\psi (x,\xi ))^2|\xi |^2 \end{aligned}$$
(2.9)

with some \(c_1>0\). Since \(-H_{x_0-\psi }(\rho ')\in \Gamma \) we see from (2.7) that

$$\begin{aligned} 1>\sum _{j=1}^r\langle {\nabla \phi _j(\rho '), H_{t-\psi }(\rho )}\rangle ^2 =\sum _{j=1}^r\{\phi _j, \psi \}^2(\rho ') \end{aligned}$$

from which, taking (2.5) and \(\nabla ^2g(\rho ')=O\) into account, we conclude that

$$\begin{aligned} |\{\psi ,\{\psi , a\}\}(\rho ')|=2\big |\sum _{j=1}^r\{\psi , \phi _j\}^2(\rho ')\big |<2. \end{aligned}$$
(2.10)

The next lemma is well known.

Lemma 2.3

Assume \(d\psi \ne 0\) and not proportional to \(dx_d\) at \(\rho ''\). Then one can find a system of local coordinates \(x=(x_1,\ldots , x_d)\) such that either \(d\psi =d\xi _1\) or \(d\psi =dx_1+cdx_d\) with some \(c\in {{\mathbb {R}}}\) at \(\rho ''\).

Proof

Since \(\partial _{\xi _d}\psi (\rho '')=0\) by the Euler’s identity one can write \(\psi (x, \xi )=\langle {{{\tilde{a}}}, {\tilde{\xi }}}\rangle +\langle {{{\tilde{b}}}, {{\tilde{x}}}}\rangle +b_dx_d+r(x, \xi )\) where \({\tilde{\xi }}=(\xi _1, \ldots , \xi _{d-1})\), \({{\tilde{x}}}=(x_1,\ldots , x_{d-1})\) and r vanishes at \(\rho ''\) of order 2. If \({{\tilde{a}}}=0\) hence \({{\tilde{b}}}\ne 0\) a linear change of coordinates \({{\tilde{x}}}\) gives a desired form. If \({{\tilde{a}}}\ne 0\) one can assume \(\langle {{{\tilde{a}}}, {\tilde{\xi }}}\rangle =\xi _1+\cdots +\xi _k\) renumbering and dilating \(x_j\), \(1\le j\le d-1\). Changing the coordinate \(x_d\) to \(x_d-\sum _{j=1}^kb_jx_j^2/2\) yields \(\langle {{{\tilde{b}}}, {\tilde{x}}}\rangle +b_dx_d=\sum _{j=k+1}^db_jx_j\). Changing again the coordinate \(x_d\) to \(x_d-x_1\sum _{j=k+1}^d b_jx_j\) yields \(b_{k+1}=\cdots =b_d=0\) hence after a linear change of coordinates \((x_1,\ldots , x_k)\) one has \(d\psi =d\xi _1\) at \(\rho ''\). \(\square \)

Proof of Proposition 2.1

Let \(\psi \) be the one given in (2.9). If \(d\psi =0\) or proportional to \(dx_d\) at \(\rho ''\) it suffices to take \(\ell =0\) and \(q=a\) because \(\partial _{\xi _d}^2a(\rho ')=0\) by the Euler’s identity. Assume \(d\psi (\rho '')\ne 0\) and not proportional to \(dx_d\). From Lemma 2.3 we may assume \(d\psi =d\xi _1\) or \(d\psi =dx_1+cdx_d\). Assume \(d\psi =d\xi _1\) at \(\rho ''\). If \(\partial _{x_1}^2a(\rho ')=0\) it suffices to take \(\ell =0\) and \(q=a\). Otherwise, thanks to the Malgrange preparation theorem (e.g. [5, Theorem 7.5.5]) one can write

$$\begin{aligned} a(t, x, \xi )=e(t, x, \xi )((x_1-h(t, x', \xi ))^2+g(t, x', \xi )),\quad x'=(x_2,\ldots , x_d) \end{aligned}$$

where \(e(\rho ')>0\) and hg, vanishing at \(\rho '\), are of homogeneous of degree 0. Choose

$$\begin{aligned} \ell (t, x, \xi )=e^{1/2}(t, x, \xi )(x_1-h(t, x', \xi )),\;\;q(t, x, \xi )=e(t, x, \xi )g(t, x', \xi ) \end{aligned}$$

and set \(\psi _1(t, x',\xi )=\psi (h(t, x', \xi ), x', \xi )\) then \(d\psi _1=d\psi \) at \(\rho '\). From (2.9) there is \(c_2>0\) such that

$$\begin{aligned} q(t, x, \xi )\ge c_2(t-\psi _1(t, x',\xi ))^2|\xi |^2. \end{aligned}$$

Since \(\partial \psi _1/\partial t=0\) at \(\rho '\) one can write \( t-\psi _1(t, x',\xi )=e'(t, x', \xi )(t-\psi _2(x', \xi ))\). Since \(d\psi _2=d\psi _1=d\xi _1\) at \(\rho '\) then \(\{{\psi _2},\{{\psi _2}, q\}\}(\rho ')=0\) hence it follows from (2.10) that \(\{\ell , \psi _2\}^2(\rho ')<1\). Thus \(\psi _2\) is a desired one. When \(d\psi =dx_1+cdx_d\) the proof is similar. In Lemma 2.3 we used coordinates changes such that \(y=A x+q(x)\) where A is a non-singular matrix and q(x) is a quadratic form in x, thus cutting q(x) off outside a neighborhood of \(x=0\) it is clear that the resulting change of coordinates satisfies the requirements in Proposition 2.1. \(\square \)

3 Quantitative expression of Proposition 2.1 by localized symbols

In this section, we localize the symbols obtained in Proposition 2.1 around \((0, e_d)\) with a positive parameter M and we will use this M to quantitatively express the condition (2.2). We first localize coordinates functions. Let \(\chi (s)\in C^{\infty }({{\mathbb {R}}})\) be such that \(\chi (s)=s\) on \(|s|\le 1\), \(|\chi (s)|=2\) on \(|s|\ge 2\) and \(0\le d\chi (s)/ds=\chi ^{(1)}(s)\le 1\) everywhere. Define \(y(x)=(y_1(x),\ldots , y_d(x))\) and \({\eta }(\xi )=(\eta _1(\xi ),\ldots , \eta _d(\xi ))\) by

$$\begin{aligned} y_j(x)=M^{-1}\chi (M x_j),\;\;{\eta }_j(\xi )=M^{-1}\chi (M(\xi _j\langle {\xi }\rangle _{\gamma }^{-1}-\delta _{jd})),\;\;1\le j\le d \end{aligned}$$

where \(\langle {\xi }\rangle _{\gamma }=(\gamma ^2+|\xi |^2)^{1/2}\) and \(\delta _{ij}\) is the Kronecker’s delta. Here M and \(\gamma \) are positive parameters constrained by

$$\begin{aligned} \gamma \ge M^4\ge 1. \end{aligned}$$
(3.1)

Clearly there is \(C>0\) such that

$$\begin{aligned} |y(x)|\le CM^{-1},\quad |\eta (\xi )|\le CM^{-1},\quad (x, \xi )\in {{\mathbb {R}}}^d\times {{\mathbb {R}}}^d \end{aligned}$$
(3.2)

so that \((y(x), \eta (\xi )+e_d)\) is contained in a neighborhood of \((0, e_d)\) which shrinks with M. Note that \((y(x), (\eta +e_d)\langle {\xi }\rangle _{\gamma })=( x,\xi )\) in a “conic like” neighborhood \(W_{M, \gamma }\) of \((0, e_d)\) given by

$$\begin{aligned} W_{M, \gamma }=\{(x,\xi )\mid |x|\le M^{-1},\; |\xi /|\xi |-e_d|\le M^{-1}/2,\; |\xi |\ge \gamma M^{1/2} \big \} \end{aligned}$$
(3.3)

because if \((x,\xi )\in W_{M, \gamma }\) then

$$\begin{aligned} |\xi /\langle {\xi }\rangle _{\gamma }-e_d|&\le |\xi /\langle {\xi }\rangle _{\gamma }-\xi /|\xi ||+|\xi /|\xi |-e_d| \le M^{-1}/2\\&\quad +|\langle {\xi }\rangle _{\gamma }-|\xi ||/\langle {\xi }\rangle _{\gamma } \le M^{-1}/2+\gamma ^2\langle {\xi }\rangle _{\gamma }^{-1}(\langle {\xi }\rangle _{\gamma }+|\xi |)^{-1}\le M^{-1}. \end{aligned}$$

From now on, fixing a \(T_0>0\), we assume that the range of t is also constrained by

$$\begin{aligned} |t|<T_0M^{-1}. \end{aligned}$$
(3.4)

Definition 3.1

For a smooth function \(f(t, x, \xi )\) near \((0, 0, e_d)\) the localization \(f_M\) is defined to be \(f(t, y(x), \eta (\xi )+e_d)\). When f is defined in a conic neighborhood of \((0, 0, e_d)\) and of homogeneous of degree m in \(\xi \) we define \(f_M=f(t, y(x), \eta (\xi )+e_d)\langle {\xi }\rangle _{\gamma }^m=f(t, y(x), (\eta (\xi )+e_d)\langle {\xi }\rangle _{\gamma })\).

Throughout the paper, \(A\lesssim B\) means \(A\le CB\) with some constant C independent of all involved parameters (\(M, \gamma \) here) if otherwise stated. We denote \(A_1\approx A_2\) if \(A_1\lesssim A_2\) and \(A_2\lesssim A_1\). To express (2.2) quantitatively introduce a preliminary metric

$$\begin{aligned} G_z(w)=M^2(|y|^2+\langle {\xi }\rangle _{\gamma }^{-2}|\eta |^2),\quad z=(x, \xi ),\;w=(y, \eta )\in {{\mathbb {R}}}^d\times {{\mathbb {R}}}^d. \end{aligned}$$
(3.5)

It is clear that \(y_j\in S(M^{-1},G)\) and

$$\begin{aligned} \big |\partial _{\xi }^{\alpha }\eta _j(\xi )\big |{} & {} \lesssim \sum _{\alpha =\alpha ^1+\cdots +\alpha ^s, |\alpha ^i|\ge 1} M^{-1} |\chi ^{(s)}(M(\xi _j\langle {\xi }\rangle _{\gamma }^{-1}-\delta _{j d}))|\\{} & {} \quad \times |\partial _{\xi }^{\alpha ^1}(M(\xi _j\langle {\xi }\rangle _{\gamma }^{-1}-\delta _{j d}))|\cdots |\partial _{\xi }^{\alpha ^s}(M(\xi _j\langle {\xi }\rangle _{\gamma }^{-1}-\delta _{jd}))|\\{} & {} \lesssim \sum _{s\le |\alpha |} M^{-1} M^s\langle {\xi }\rangle _{\gamma }^{-|\alpha |}\lesssim M^{-1+|\alpha |}\langle {\xi }\rangle _{\gamma }^{-|\alpha |},\quad |\alpha |\ge 1 \end{aligned}$$

shows \(\eta _j\in S(M^{-1}, G)\).

Lemma 3.1

Let \(f(t, x, \xi )\) be a smooth function in a neighborhood of \((0, 0, e_d)\) such that \(\partial _t^k\partial _x^{\alpha }\partial _{\xi }^{\beta }f(0, 0, e_d)=0\) for \(k+|\alpha +\beta |<r\). Then \(f_M\in S(M^{-r}, G)\) and

$$\begin{aligned} f_M(t, x, \xi )-\sum _{k+|\alpha +\beta |=r}\frac{1}{k!\alpha !\beta !}\partial _t^k\partial _x^{\alpha }\partial _{\xi }^{\beta }f(0, 0, e_d)t^ky^{\alpha }\eta ^{\beta }\in S(M^{-r-1}, G) \end{aligned}$$

and \(\partial _tf_M\in S(M^{-r+1}, G)\). If the term \(\sum _{k+|\alpha +\beta |=r}\cdots \) contains no \(y_l\) then \(\partial _{x_l}f_M\in S(M^{-r}, G)\) and contains no \(\eta _d\) then \(\partial _{\xi _d}f_M\in S(M^{-r}\langle {\xi }\rangle _{\gamma }^{-1}, G)\). Moreover if the term contains neither \(\eta _d\) nor \(\eta _l\) \((1\le l\le d-1)\) then we have \(\partial _{\xi _l}f_M\in S(M^{-r}\langle {\xi }\rangle _{\gamma }^{-1}, G)\).

Proof

Noting

$$\begin{aligned} \partial \eta _j/\partial \xi _k-\delta _{j k}\chi ^{(1)}(M\xi _j\langle {\xi }\rangle _{\gamma }^{-1})\langle {\xi }\rangle _{\gamma }^{-1}\in S(M^{-1}\langle {\xi }\rangle _{\gamma }^{-1}, G) \end{aligned}$$

for \(1\le j\le d-1\), \(1\le k\le d\) the proof follows from the Taylor formula

$$\begin{aligned} \begin{aligned} f(t, y, \eta +e_d)&=\sum _{k+|\alpha +\beta |=r}\frac{1}{k!\alpha !\beta !}\partial _t^k\partial _x^{\alpha }\partial _{\xi }^{\beta }f(0, 0, e_d)t^ky^{\alpha }\eta ^{\beta }\\&\quad +\sum _{k+|\alpha +\beta |=r+1}\frac{r+1}{k!\alpha !\beta !}t^ky^{\alpha }\eta ^{\beta }\int _0^1(1-\theta )^r\partial _t^k\partial _x^{\alpha }\partial _{\xi }^{\beta }f(\theta t, \theta y, \theta \eta +e_d)d\theta \end{aligned} \end{aligned}$$
(3.6)

where the integral belongs to S(1, G) since \(|(t, y, \eta )|\le CM^{-1}\). \(\square \)

Let \(x\mapsto \chi (x)\) be the diffeomorphism on \({{\mathbb {R}}}^d\) obtained in Proposition 2.1 and denoting \((T u)(t, x)=u(t, \kappa (x))\) the localized symbol of \(T^{-1}PT\) is given by

$$\begin{aligned} {{\hat{P}}}(t, x, \tau , \xi )=-\tau ^2+\ell _M^2(t, x,\xi )+q_M(t, x, \xi )+a_1(t, x,\xi )+a_0(t, x,\xi )\tau \end{aligned}$$

where \(\ell _M\in S(M^{-1}\langle {\xi }\rangle _{\gamma }, G)\), \(q_M\in S(M^{-2}\langle {\xi }\rangle _{\gamma }^2, G)\) and \(a_j\in S(\langle {\xi }\rangle _{\gamma }^j, G)\). Noting \(|\eta (\xi )+e_d|\ge (1-CM^{-1})\) from (2.1) one finds \(M_1>0\), \({\underline{c}}>0\) such that

$$\begin{aligned} \begin{aligned} q_M(t, x, \xi ) \ge {\underline{c}}\,(t-\psi _M(x, \xi ))^2\langle {\xi }\rangle _{\gamma }^2. \end{aligned} \end{aligned}$$
(3.7)

The following two propositions are quantitative expressions of (2.2).

Proposition 3.1

We have \(\{\psi _M, q_M\}\in S(M^{-2}\langle {\xi }\rangle _{\gamma }, G)\) and that \(|\{\psi _M, q_M\}|\le CM^{-1/2}\sqrt{q_M}\).

Proof

Choose \(f=q\) and \(r=2\) in (3.6) then the quadratic form in \((t, y, \eta )\) is nonnegative definite since \(q(t, y,\eta +e_d)\) is nonnegative. In the case (a) this quadratic form contains no \(y_1\) because of (2.4) hence \(\partial _{x_1}^2q_M(t, x, \xi )\in S(M^{-1}\langle {\xi }\rangle _{\gamma }^2, G)\) and \(\partial _{x_j}^2q_M(t, x, \xi )\in S(\langle {\xi }\rangle _{\gamma }^2, G)\) by Lemma 3.1 then from the Glaeser inequality one obtains

$$\begin{aligned} \big |\partial _{x_j}q_M\big |\le CM^{-\delta _{1j}/2}\sqrt{q_M}\,\langle {\xi }\rangle _{\gamma },\quad \forall j. \end{aligned}$$
(3.8)

In the case (b), thanks to Euler’s identity and (2.4) we have \(\partial _{\xi _d}^2q(0, 0, e_d)=0\) and \(\varepsilon \partial _{\xi _1}^2q(0, 0, e_d)=0\) hence repeating the same arguments as above one obtains

$$\begin{aligned} |\partial _{\xi _d}q_M|\le CM^{-1/2}\sqrt{q_M},\quad |\partial _{\xi _j}q_M|\le CM^{-\varepsilon \delta _{1j}/2}\sqrt{q_M},\quad j\ne d. \end{aligned}$$
(3.9)

Next study \(\psi _M\). In the case (a) since \( |\eta (\xi )+e_d|^2=\sum _{j=1}^{d-1}\eta _j^2+(\eta _d+1)^2=1+k\) with \(k\in S(M^{-1}, G)\) hence \(1/|\eta (\xi )+e_d|=1+{{\tilde{k}}}\) with \({{\tilde{k}}}\in S(M^{-1}, G)\) one sees \(\eta _1(\xi )/|\eta (\xi )+e_d|-\eta _1(\xi )\in S(M^{-2}, G)\). Then noting (2.3) it follows from Lemma 3.1 that

$$\begin{aligned} \begin{aligned}&{ \psi _M}(x, \xi )-\eta _1(\xi )\in S(M^{-2}, G),\;\; \partial _{x_j}\psi _M(x, \xi )\in S(M^{-1}, G),\quad \forall j,\\&\partial _{\xi _j}{ \psi _M}(x, \xi )-\delta _{1 j}\chi ^{(1)}(M\xi _1\langle {\xi }\rangle _{\gamma }^{-1})\langle {\xi }\rangle _{\gamma }^{-1}\in S(M^{-1}\langle {\xi }\rangle _{\gamma }^{-1}, G),\quad \forall j. \end{aligned} \end{aligned}$$
(3.10)

In the case (b) we have similarly that

$$\begin{aligned} \begin{aligned}&{\psi _M}(x, \xi )-\varepsilon y_1(x)-cy_d(x)\in S(M^{-2}, G),\\&\partial _{\xi _j}\psi _M(x, \xi )\in S(M^{-1}\langle {\xi }\rangle _{\gamma }^{-1}, G),\quad \forall j\\&\partial _{x_j}{\psi _M}-\varepsilon \delta _{1 j}\chi ^{(1)}(M x_1)-c\delta _{d\, j}\chi ^{(1)}(Mx_d)\in S(M^{-1}, G),\;\;\forall j. \end{aligned} \end{aligned}$$
(3.11)

Now proceed to the proof of the proposition. In the case (a), noting \(\partial _{x_1}q_M\in S(M^{-2}\langle {\xi }\rangle _{\gamma }^2, G)\), the first assertion follows from (3.10) and Lemma 3.1. The second assertion follows from (3.8) and (3.10). The proof for the case (b) is similar. \(\square \)

Proposition 3.2

We have \(\{{\ell _M}, {\psi _M}\}\in S(1, G)\) and \(\sup |\{\ell _M, \psi _M\}|\le |\kappa |+CM^{-1}\) where \(|\kappa |<1\).

Proof

Note that \(\partial _{\xi _d}\ell _M \in S(M^{-1}, G)\) for \(\partial _{\xi _d}\ell (0, 0, e_d)=0\) by Euler’s identity. According to the case (a) or (b) we have \(\partial _x^{\alpha }\psi _M\in S(M^{-1}, G)\) or \(\partial _{\xi }^{\alpha }\psi _M(M^{-1}\langle {\xi }\rangle _{\gamma }^{-1}, G)\) for \(|\alpha |=1\) in view of (2.3) then it follows from (3.10) and (3.11) that

$$\begin{aligned} \{\ell _M, \psi _M\}+\kappa \chi ^{(1)}(Mx_1)\chi ^{(1)}(M\xi _1\langle {\xi }\rangle _{\gamma }^{-1})\in S(M^{-1}, G) \end{aligned}$$

where \(\kappa =\partial _{x_1}\ell (0, e_d)\) or \(\kappa =-\varepsilon \partial _{\xi _1}\ell (0, e_d)\) and \(|\kappa |<1\) by (2.2). Noting that \(\chi ^{(1)}(Mx_1)\chi ^{(1)}(M\xi _1\langle {\xi }\rangle _{\gamma }^{-1})\in S(1, G)\) and whose modulus is at most 1 the proof is complete. \(\square \)

From now on, for notational simplicity we simply write \(\psi \), \(\ell \) and q instead of \(\psi _M\), \(\ell _M\) and \(q_M\).

4 Energy estimates for localized operators

In this section, we utilize \(t-\psi (x, \xi )\) obtained from the geometric characterization of effectively hyperbolic characteristic points to derive the weighted energy estimate for the localized operator \({{\hat{P}}}=\textrm{op}({{{\hat{P}}}(t, x, \tau , \xi )})\).

4.1 Metrics and weights related to energy estimates

In this paper the following simple metrics are used;

$$\begin{aligned} \begin{aligned} {{\bar{g}}}&=\langle {\xi }\rangle _{\gamma }|dx|^2+\langle {\xi }\rangle _{\gamma }^{-1}|d\xi |^2,\quad {\underline{g}}=|dx|^2+\langle {\xi }\rangle _{\gamma }^{-2}|d\xi |^2,\quad \gamma \ge 1,\\ g_{\epsilon }&=M^{-2\delta _{\epsilon a}}\langle {\xi }\rangle _{\gamma }|dx|^2+M^{-2\delta _{\epsilon b}}\langle {\xi }\rangle _{\gamma }^{-1}|d\xi |^2,\quad \gamma \ge M^4\ge 1 \end{aligned} \end{aligned}$$
(4.1)

where \(g_{\epsilon }\) is related to the coordinates change (a) or (b), namely \(\epsilon \) is either a or b and \(\delta _{\epsilon \epsilon '}=1\) if \(\epsilon =\epsilon '\) and 0 otherwise. The properties of pseudodifferential operators associated with metrics (4.1) are summarized in the Appendix. It is clear that

$$\begin{aligned} g_{\epsilon }/g_{\epsilon }^{\sigma }\le M^{-2},\quad M^{-2}{{\bar{g}}}\le g_{\epsilon }\le {{\bar{g}}}\end{aligned}$$

such that \(g_{\epsilon }\) satisfies (6.31). Noting that \(a\in S(m, g_{\epsilon })\) if and only if

$$\begin{aligned} |\partial _x^{\alpha }\partial _{\xi }^{\beta }a|\lesssim m M^{-\epsilon (\alpha , \beta )}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2},\;\; \epsilon (\alpha , \beta )=|\alpha |\delta _{\epsilon a}+|\beta |\delta _{\epsilon b},\;\;\alpha , \beta \in {{\mathbb {N}}}^d \end{aligned}$$

and \(M^{|\alpha +\beta |}\langle {\xi }\rangle _{\gamma }^{-|\beta |}\le (M^4\langle {\xi }\rangle _{\gamma }^{-1})^{|\alpha +\beta |/2}M^{-\epsilon (\alpha , \beta )}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}\) it is clear that \(S(m, G)\subset S(m, g_{\epsilon })\). Following Sect. 6.2 we set

$$\begin{aligned} b=(q(t, x, \xi )+\lambda \langle {\xi }\rangle _{\gamma })^{1/2} \end{aligned}$$

then there exists \({\bar{\lambda }}\) such that for \(\lambda \ge {\bar{\lambda }}\) both Proposition 6.1 and Lemma 6.8 hold. From now on we fix such a \(\lambda ={\bar{\lambda }}\), while M and \(\gamma \) remain to be free under the constraints (3.1) and (6.21). Introducing

$$\begin{aligned} \omega (t, x, \xi )=((t-\psi (x, \xi ))^2+\langle {\xi }\rangle _{\gamma }^{-1})^{1/2} \end{aligned}$$
(4.2)

and taking (3.7) and \(\langle {\xi }\rangle _{\gamma }^{-1/2}\le \omega \) into account one sees that b satisfies (\({\bar{\lambda }}\ge {\underline{c}}\) can be assumed)

$$\begin{aligned} \begin{aligned} b&=(q+{\bar{\lambda }} \langle {\xi }\rangle _{\gamma })^{1/2}\ge \big ({\underline{c}}\,(t-\psi )^2\langle {\xi }\rangle _{\gamma }^2+{\bar{\lambda }} \langle {\xi }\rangle _{\gamma }\big )^{1/2}\\&\ge \sqrt{{\underline{c}}}\,\, \omega ^{-1}\langle {\xi }\rangle _{\gamma }\big ((t-\psi )^2\omega ^2+\omega ^2\langle {\xi }\rangle _{\gamma }^{-1}\big )^{1/2}\\&\ge \sqrt{{\underline{c}}}\,\, \omega ^{-1}\langle {\xi }\rangle _{\gamma }\big (|t-\psi |^4+\langle {\xi }\rangle _{\gamma }^{-2}\big )^{1/2}\ge \sqrt{{\underline{c}}/2}\,\,\omega \langle {\xi }\rangle _{\gamma }. \end{aligned} \end{aligned}$$
(4.3)

Lemma 4.1

We have \(\partial _x^{\alpha }\partial _{\xi }^{\beta }q\in S(\langle {\xi }\rangle _{\gamma }^{1-|\beta |} b, {{\bar{g}}})\) for \(|\alpha +\beta |=1\), \(\partial _tq\in S(\langle {\xi }\rangle _{\gamma }b, {{\bar{g}}})\) and \(\{q, \psi \}\in S(M^{-1/2}b, {{\bar{g}}})\).

Proof

The first two assertions are immediate consequences of Lemma 6.7. The third assertion follows from Proposition 3.1 and (6.30). \(\square \)

The following weight is a key to energy estimates

$$\begin{aligned} \phi (t, x, \xi )=\omega (t, x, \xi )+t-\psi (x, \xi ) \end{aligned}$$

where it is clear that \(\phi \) verifies

$$\begin{aligned} M\langle {\xi }\rangle _{\gamma }^{-1}/C&\le \langle {\xi }\rangle _{\gamma }^{-1}/(2\omega )\le \phi \le CM^{-1}, \end{aligned}$$
(4.4)
$$\begin{aligned} \partial _t\phi&=\omega ^{-1}\phi ,\quad \partial _x^{\alpha }\partial _{\xi }^{\beta }\phi =\frac{-\partial _x^{\alpha }\partial _{\xi }^{\beta }\psi }{\omega }\phi +\frac{\partial _x^{\alpha }\partial _{\xi }^{\beta }\langle {\xi }\rangle _{\gamma }^{-1}}{2\omega },\quad |\alpha +\beta |=1. \end{aligned}$$
(4.5)

Lemma 4.2

We have \( \partial _x^{\alpha }\partial _{\xi }^{\beta }\psi \in S(\langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\alpha , \beta )}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}, g_{\epsilon })\) for \(|\alpha +\beta |\ge 1\).

Proof

Recall that \(\psi =\eta _1(\xi )+r\) or \(\psi =\varepsilon y_1(x)+cy_d(x)+r\) with \(r\in S(M^{-2}, G)\) according to the coordinates change (a) or (b). For \(\nu =\beta '+\beta \), \(|\beta |\ge 1\) we have

$$\begin{aligned} |\partial _{\xi }^{\nu }\psi |\lesssim M^{-1-\delta _{\epsilon b}+|\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |} \lesssim \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (0,\nu )}\langle {\xi }\rangle _{\gamma }^{-|\nu |/2}(M^{2+2\delta _{\epsilon b}}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\nu |-1)/2}. \end{aligned}$$

For \(\mu =\alpha '+\alpha \), \(|\alpha |\ge 1\) one has

$$\begin{aligned} |\partial _x^{\mu }\psi |\lesssim M^{-1-\delta _{\epsilon a}+|\mu |}\lesssim \langle {\xi }\rangle _{\gamma }^{-1/2} M^{-\epsilon (\mu , 0)}\langle {\xi }\rangle _{\gamma }^{|\mu |/2}(M^{2+2\delta _{\epsilon a}}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu |-1)/2}. \end{aligned}$$

Let \(\mu =\alpha '+\alpha \), \(|\alpha |\ge 1\) and \(\nu =\beta '+\beta \), \(|\beta |\ge 1\) then noting \(|\mu +\nu |\le 2|\mu +\nu |-\epsilon (\mu , \nu )\) one has

$$\begin{aligned} |\partial _x^{\mu }\partial _{\xi }^{\nu }\psi |\lesssim & {} M^{-2+|\mu +\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}\\\lesssim & {} \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\mu , \nu )}\langle {\xi }\rangle _{\gamma }^{(|\mu |-|\nu |)/2}(M^4\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu +\nu |-1)/2}. \end{aligned}$$

Since \(M^{2+2\delta _{\epsilon \epsilon '}}\langle {\xi }\rangle _{\gamma }^{-1}\le M^4\langle {\xi }\rangle _{\gamma }^{-1}\le 1\) by (3.1) the assertion is proved. \(\square \)

Lemma 4.3

We have \( \partial _x^{\alpha }\partial _{\xi }^{\beta }\omega ^s\in S( \omega ^{s-1}\langle {\xi }\rangle _{\gamma }^{-1/2}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}, g_{\epsilon })\) for \(|\alpha +\beta |\ge 1\) and \(s\in {{\mathbb {R}}}\). In particular \(\omega ^s\in S(\omega ^s, g_{\epsilon })\).

Proof

We first show the assertion for \(s=2\). Since \(\omega ^2=(t-\psi )^2+\langle {\xi }\rangle _{\gamma }^{-1}\) noting \(\omega \langle {\xi }\rangle _{\gamma }^{1/2}\ge 1\) and \(|t-\psi |\le \omega \) one sees for \(\nu =\beta '+\beta \), \(|\beta |\ge 1\) that

$$\begin{aligned} |\partial _{\xi }^{\nu }\omega ^2|\lesssim & {} \omega M^{-1-\delta _{\epsilon b}+|\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}+M^{-2-2\delta _{\epsilon b}+|\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}+\langle {\xi }\rangle _{\gamma }^{-1-|\nu |}\\\lesssim & {} \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (0, \nu )}\langle {\xi }\rangle _{\gamma }^{-|\nu |/2}(M^{2+2\delta _{\epsilon b}}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\nu |-1)/2}\\{} & {} + \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (0,\nu )}\langle {\xi }\rangle _{\gamma }^{-|\nu |/2} (M^{2+2\delta _{\epsilon b}} \langle {\xi }\rangle _{\gamma }^{-1})^{(|\nu |-2)/2} +\omega \langle {\xi }\rangle _{\gamma }^{-1/2} \langle {\xi }\rangle _{\gamma }^{-|\nu |} \end{aligned}$$

where it should be understood that the second term on the right-hand side is absent when \(|\nu |=1\). To estimate the last term it suffices to note \(\langle {\xi }\rangle _{\gamma }^{-|\nu |}\le (M^2\langle {\xi }\rangle _{\gamma }^{-1})^{-|\nu |/2}M^{-\epsilon (0,\nu )}\langle {\xi }\rangle _{\gamma }^{-|\nu |/2}\). When \(\mu =\alpha '+\alpha \), \(|\alpha |\ge 1\) we see

$$\begin{aligned} |\partial _x^{\mu }\omega ^2|\lesssim & {} \omega M^{-1-\delta _{\epsilon a}+|\mu |}+M^{-2-2\delta _{\epsilon a}+|\mu |}\\\lesssim & {} \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\mu , 0)} \langle {\xi }\rangle _{\gamma }^{|\mu |/2}(M^{2+2\delta _{\epsilon a}}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu |-1)/2}\\{} & {} + \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\mu , 0)} \langle {\xi }\rangle _{\gamma }^{|\mu |/2}(M^{2+2\delta _{\epsilon a}}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu |-2)/2} \end{aligned}$$

where if \(|\alpha |=1\) the second term on the right-hand side is absent as above. When \(\mu =\alpha '+\alpha \), \(\nu =\beta '+\beta \), \(|\alpha +\beta |\ge 1\) and \(|\mu |\ge 1\), \(|\nu |\ge 1\) noting that \(\partial _x^{\mu }\partial _{\xi }^{\nu }\psi =\partial _x^{\mu }\partial _{\xi }^{\nu } r\) and \(\partial _x^{\mu }\partial _{\xi }^{\nu }\psi \in S(M^{-3+|\mu +\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}, G)\) we have

$$\begin{aligned} \big |\partial _x^{\mu }\partial _{\xi }^{\nu }\omega ^2\big |\lesssim & {} |\omega \partial _x^{\mu }\partial _{\xi }^{\nu }r|+M^{-3+|\mu +\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}\\\lesssim & {} \omega M^{-2+|\mu +\nu |}\langle {\xi }\rangle _{\gamma }^{-|\nu |}+M^{1-|\mu +\nu |}\langle {\xi }\rangle _{\gamma }^{-1}(M^4\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu +\nu |-2)/2}\langle {\xi }\rangle _{\gamma }^{-(|\mu |-|\nu |)/2}\\\lesssim & {} \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\mu , \nu )}\langle {\xi }\rangle _{\gamma }^{(|\mu |-|\nu |)/2}(M^{4}\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu +\nu |-1)/2}\\{} & {} + \omega \langle {\xi }\rangle _{\gamma }^{-1/2}M^{-\epsilon (\alpha ', \beta ')}\langle {\xi }\rangle _{\gamma }^{(|\alpha '|-|\beta '|)/2}(M^4\langle {\xi }\rangle _{\gamma }^{-1})^{(|\mu +\nu |-2)/2}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2} \end{aligned}$$

where \(1-|\mu +\nu |\le -\epsilon (\alpha ', \beta ')\) and \(\langle {\xi }\rangle _{\gamma }^{-1}\le \omega \langle {\xi }\rangle _{\gamma }^{-1/2}\) are used. Thus the case \(s=2\) is proved. Since \(\langle {\xi }\rangle _{\gamma }^{-1/2}\le \omega \) it is obvious \(\omega ^2\in S(\omega ^2, g_{\epsilon })\). The estimates for general \(\omega ^s=(\omega ^2)^{s/2}\) follows from those of \(\omega ^2\). \(\square \)

Lemma 4.4

We have \(\phi \in S(\phi , g_{\epsilon })\).

Proof

Using (4.5) we write

$$\begin{aligned} \partial _x^{\alpha }\partial _{\xi }^{\beta }\phi =\frac{-\partial _x^{\alpha }\partial _{\xi }^{\beta }\psi }{\omega }\phi +\frac{\partial _x^{\alpha }\partial _{\xi }^{\beta }\langle {\xi }\rangle _{\gamma }^{-1}}{2\omega }=\phi _{\alpha \beta }\phi +\psi _{\alpha \beta },\quad |\alpha +\beta |=1. \end{aligned}$$
(4.6)

Since \(\omega ^{-1}\in S(\omega ^{-1}, g_{\epsilon })\) by Lemma 4.3 then

$$\begin{aligned} \begin{aligned} |\partial _x^{\mu }\partial _{\xi }^{\nu }(\psi _{\alpha \beta })|&\lesssim \omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1}M^{-\epsilon (\mu , \nu )}\langle {\xi }\rangle _{\gamma }^{(|\alpha +\mu |-|\beta +\nu |)/2}\langle {\xi }\rangle _{\gamma }^{-1/2} \\&\lesssim \phi M^{-\epsilon (\alpha +\mu , \beta +\nu )}\langle {\xi }\rangle _{\gamma }^{(|\alpha +\mu |-|\beta +\nu |)/2} \end{aligned} \end{aligned}$$
(4.7)

in view of \(\langle {\xi }\rangle _{\gamma }^{-1/2}\le M^{-1}\) and (4.4). On the other hand Lemma 4.2 shows

$$\begin{aligned} \phi _{\alpha \beta }\in S(\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}, g_{\epsilon }),\quad |\alpha +\beta |\ge 1. \end{aligned}$$
(4.8)

Hence differentiating (4.6) the assertion is proved by induction on \(|\alpha +\beta |\) noting (4.7) and (4.8). \(\square \)

Proposition 4.1

We have \(\omega ^s\in S(\omega ^s, g_{\epsilon })\) and \(\phi ^s\in S(\phi ^s, g_{\epsilon })\). For \(|\alpha +\beta |\ge 1\)

$$\begin{aligned}{} & {} \partial _x^{\alpha }\partial _{\xi }^{\beta }\omega ^s\in S(\omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1/2}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}\omega ^s, g),\\{} & {} \partial _x^{\alpha }\partial _{\xi }^{\beta }\phi ^s\in S(\omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1/2}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}\phi ^s, g). \end{aligned}$$

Proof

It remains to prove the assertion for \(\phi \). Let \(\phi _{\alpha \beta }\), \(\psi _{\alpha \beta }\) be those in (4.6). Note \(\phi _{\alpha \beta }\in S(\omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1/2}\langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}, g_{\epsilon })\) for \(|\alpha +\beta |\ge 1\) by Lemma 4.2, while \(\psi _{\alpha \beta }\in S(\omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1/2}\phi \langle {\xi }\rangle _{\gamma }^{(|\alpha |-|\beta |)/2}, g_{\epsilon })\) for \(|\alpha +\beta |\ge 1\) because of (4.7) and (4.4). Hence the assertion for \(s=1\) follows from (4.6). The estimate for general \(s\in {{\mathbb {R}}}\) follows from the estimate for the case \(s=1\). \(\square \)

Proposition 4.2

\(\omega \) and \(\phi \) are \(g_{\epsilon }\) admissible weights (Definition 6.1).

Proof

It suffices to show

$$\begin{aligned} \omega (z+w)\le C\omega (z)(1+g_{\epsilon , z}(w)),\quad \phi (z+w)\le C\phi (z)(1+g_{\epsilon , z}(w))^2. \end{aligned}$$
(4.9)

If \(|\eta |\ge \langle {\xi }\rangle _{\gamma }/2\) noting \( \langle {\xi }\rangle _{\gamma }^{-1/2}\le \omega \le CM^{-1}\) one has

$$\begin{aligned} g_{\epsilon , z}(w)\ge M^{-2}\langle {\xi }\rangle _{\gamma }^{-1}|\eta |^2\ge M^{-2}\langle {\xi }\rangle _{\gamma }/4\ge \big (M^{-2}\langle {\xi }\rangle _{\gamma }^{1/2}\big )\langle {\xi }\rangle _{\gamma }^{1/2}/4\ge \langle {\xi }\rangle _{\gamma }^{1/2}/4. \end{aligned}$$

Thus in view of (4.4) one sees

$$\begin{aligned} \begin{aligned} \omega (z+w)&\le CM^{-1}\le CM^{-1}\langle {\xi }\rangle _{\gamma }^{1/2}\omega (z) \le C\omega (z)(1+g_{\epsilon , z}(w)),\\ \phi (z+w)&\le CM^{-1}\le CM^{-2}\langle {\xi }\rangle _{\gamma }\phi (z)\le C\phi (z)(1+g_{\epsilon , z}(w))^2. \end{aligned} \end{aligned}$$
(4.10)

Assume \(|\eta |<\langle {\xi }\rangle _{\gamma }/2\). Set \(f=t-\psi \) and \(h=\langle {\xi }\rangle _{\gamma }^{-1/2}\) so that \(\omega ^2=f^2+h^2\). Since \(|f(z+w)+f(z)|/|\omega (z+w)+\omega (z)|\) and \(|h(z+w)+h(z)|/|\omega (z+w)+\omega (z)|\) are bounded by 2 we have

$$\begin{aligned} \begin{aligned} |\omega (z+w)-\omega (z)|&=|\omega ^2(z+w)-\omega ^2(z)|/|\omega (z+w)+\omega (z)|\\&\le 2|f(z+w)-f(z)|+2|h(z+w)-h(z)|. \end{aligned} \end{aligned}$$
(4.11)

Noting \(|f(z+w)-f(z)|=|\psi (z+w)-\psi (z)|\) the estimate

$$\begin{aligned} \begin{aligned} |f(z+w)-f(z)|&\le C (M^{-\delta _{\epsilon a}}|y|+M^{-\delta _{\epsilon b}}\langle {\xi +s\eta }\rangle _{\gamma }^{-1}|\eta |)\\&\le C \langle {\xi }\rangle _{\gamma }^{-1/2}(M^{-\delta _{\epsilon a}}\langle {\xi }\rangle _{\gamma }^{1/2}|y|+M^{-\delta _{\epsilon b}}\langle {\xi }\rangle _{\gamma }^{-1/2}|\eta |)\\&\le C\omega (z)g_{\epsilon , z}^{1/2}(w). \end{aligned} \end{aligned}$$
(4.12)

follows from Lemma 4.2 and (6.28). Similarly noting \(g_{\epsilon , z}^{1/2}(w)\ge M^{-1}\langle {\xi }\rangle _{\gamma }^{-1/2}|\eta |\) one has \( |h(z+w)-h(z)|\le C\langle {\xi }\rangle _{\gamma }^{-3/2}|\eta |\le CM\langle {\xi }\rangle _{\gamma }^{-1}g_{\epsilon , z}^{1/2}(w)\le C\omega (z)g_{\epsilon , z}^{1/2}(w)\) hence (4.11) gives

$$\begin{aligned} |\omega (z+w)-\omega (z)|\le C\omega (z)g_{\epsilon , z}^{1/2}(w). \end{aligned}$$
(4.13)

Together with (4.10) one concludes that \(\omega \) is \(g_{\epsilon }\) admissible weight. Turn to \(\phi \). Since \(\phi =\omega +f\) one can write \(\phi (z+w)-\phi (z)\) as

$$\begin{aligned} \begin{aligned} \frac{(f(z+w)-f(z))(\phi (z+w)+\phi (z))+h^2(z+w)-h^2(z)}{\omega (z+w)+\omega (z)} \end{aligned} \end{aligned}$$
(4.14)

where \(|f(z+w)-f(z)|\le C\langle {\xi }\rangle _{\gamma }^{-1/2}g_{\epsilon , z}^{1/2}(w)\) by (4.12) and \(|h^2(z+w)-h^2(z)|\le CM\langle {\xi }\rangle _{\gamma }^{-3/2 }g_{\epsilon , z}^{1/2}(w)\) is easy. The insertion of these estimates into (4.14) yields

$$\begin{aligned} \begin{aligned} |\phi (z+w)-\phi (z)|&\le C\Bigg (\frac{\langle {\xi }\rangle _{\gamma }^{-1/2}}{\omega (z+w)+\omega (z)}(\phi (z+w)+\phi (z))\\&\quad +\frac{M\langle {\xi }\rangle _{\gamma }^{-3/2}}{\omega (z+w)+\omega (z)}\Bigg )\,g^{1/2}_{\epsilon , z}(w). \end{aligned} \end{aligned}$$
(4.15)

From \(\phi (z)\ge M\langle {\xi }\rangle _{\gamma }^{-1}/C\) by (4.4) it follows that

$$\begin{aligned} |\phi (z+w)-\phi (z)| \le C(\phi (z+w)+2\phi (z))\frac{\langle {\xi }\rangle _{\gamma }^{-1/2}}{\omega (z+w)+\omega (z)}\,g^{1/2}_{\epsilon , z}(w). \end{aligned}$$

If \(C\langle {\xi }\rangle _{\gamma }^{-1/2}\,g^{1/2}_{\epsilon , z}(w)\big /(\omega (z+w)+\omega (z))<1/3\) then \(\big |\phi (z+w)/\phi (z)-1\big |\le (\phi (z+w)/\phi (z)+2)/3\) and hence

$$\begin{aligned} 2\phi (z+w)/5\le \phi (z)\le 4\,\phi (z+w). \end{aligned}$$
(4.16)

If \( C\langle {\xi }\rangle _{\gamma }^{-1/2}\,g^{1/2}_{\epsilon , z}(w)\big /(\omega (z+w)+\omega (z))\ge 1/3\) then \(C^2g_{\epsilon , z}(w)\ge \langle {\xi }\rangle _{\gamma }(\omega (z+w)+\omega (z))^2/9\ge 2\langle {\xi }\rangle _{\gamma }\omega (z+w)\omega (z)/9\) hence noting \(\phi (z)\ge \langle {\xi }\rangle _{\gamma }^{-1}/(2\omega (z))\) and using an obvious inequality \( 2\,\omega (z+w)\ge \phi (z+w)\) one obtains

$$\begin{aligned} 18C^2(1+g_{\epsilon , z}(w))\ge \phi (z+w)\big /\phi (z) \end{aligned}$$

which together with (4.10) proves that \(\phi \) is \(g_{\epsilon }\) admissible weight. \(\square \)

4.2 Weighted energy estimates

With \({\bar{\lambda }}\) which we have fixed in the previous section we write \({{\hat{P}}}(t, x, \tau , \xi )\) as

$$\begin{aligned} {{\hat{P}}}(t, x, \tau , \xi ) =-\tau ^2+\ell ^2(t, x,\xi )+(q(t, x, \xi )+{\bar{\lambda }}\langle {\xi }\rangle _{\gamma })\\ +(a_{1}(t, x, \xi )-{\bar{\lambda }})\langle {\xi }\rangle _{\gamma }+a_{0}(t, x,\xi )\tau . \end{aligned}$$

Let us denote

$$\begin{aligned}&{{\hat{P}}}=\textrm{op}({{{\hat{P}}}(t, x,\tau ,\xi )}),\quad L=\textrm{op}({\ell }),\\&Q=\textrm{op}({q+{\bar{\lambda }} \langle {\xi }\rangle _{\gamma }}),\quad \sqrt{Q}=\textrm{op}({(q+{\bar{\lambda }}\langle {\xi }\rangle _{\gamma })^{1/2}})=\textrm{op}({b}). \end{aligned}$$

In what follows \({{\hat{P}}}\) and \({{\hat{P}}}(t, x, \tau ,\xi )\) stands for operator and its symbol respectively. Since \(\ell \in S(M^{-1}\langle {\xi }\rangle _{\gamma }, G)\) hence \(\partial _x^{\alpha }\partial _{\xi }^{\beta }\ell \in S(M\langle {\xi }\rangle _{\gamma }^{1-|\beta |}, g_{\epsilon })\) for \(|\alpha +\beta |=2\), Theorem 6.1 shows \(\ell \#\ell -\ell ^2\in S(M^2, g_{\epsilon })\) so that \( \textrm{op}({\ell ^2})=L^2+\textrm{op}({r})\) with \(r\in S(M^2, g_{\epsilon })\). Thus \({{\hat{P}}}\) can be written

$$\begin{aligned} {{\hat{P}}}=-D_t^2+L^2+Q+B_0D_t+B_1,\;\; B_i=\textrm{op}({{{\tilde{a}}_i}}),\;\;{{\tilde{a}}_i}\in S(\langle {\xi }\rangle _{\gamma }^i, g_{\epsilon }). \end{aligned}$$
(4.17)

for \(M^2\le \langle {\xi }\rangle _{\gamma }^{1/2}\). Let \(\theta >0\) be a parameter we consider \({{\hat{P}}_{\theta }}=e^{-\theta t}{{\hat{P}}}e^{\theta t}\). Noting \((D_t-i\theta )=e^{-\theta t}D_t e^{\theta t}\) one can write \({{\hat{P}}_{\theta }}\) as

$$\begin{aligned} {{\hat{P}}_{\theta }}=-A^2+L^2+Q+B_0A+B_1,\quad A=D_t-i\theta . \end{aligned}$$
(4.18)

Here we define several weights for energy estimates.

Definition 4.1

Define \(\varPhi ^{k\sharp }_n=\textrm{op}({\omega ^{-k/2}\phi ^{-n}})\), \(\varPsi ^{k\sharp }_n=\textrm{op}({\omega ^{1-k/2}\langle {\xi }\rangle _{\gamma }\phi ^{-n}})\), \(k=0,1,2, 3\). We denote \(\varPhi _n^{0\sharp }\), \( \varPhi _n^{1\sharp }\) simply by \(\varPhi _n\), \(\varPhi _n^{\sharp }\). We apply the same abbreviation for \(\varPsi _n^{k\sharp }\). For simplicity we will write \(\varPhi ^{k\sharp }\), \(\varPsi ^{k\sharp }\) dropping the parameter n, but it should be reminded that they include parameters n, M and \(\gamma \).

Throughout the section, small letters such as c, \({{\hat{c}}}\), \({{\bar{c}}}\), \(c_i\) denote constants independent of n, M, \(\gamma \) and \(\theta \), while capital letter C, may change from line to line, denotes constants which may depend on n but independent of M, \(\gamma \) and \(\theta \).

Lemma 4.5

If \(K^*=K\) then

$$\begin{aligned} \begin{aligned} 2{\textsf{Im}}(\varPhi K u, \varPhi Au)&=\partial _t(K \varPhi u, \varPhi u)+2\theta (K \varPhi u, \varPhi u)\\&\quad +2{\textsf{Im}}([\varPhi , K]u, \varPhi A u)+2{\textsf{Im}}(K\varPhi u, [\varPhi , A]u) \\&\quad -{\textsf{Re}}((\partial _tK)\varPhi u, \varPhi u) \end{aligned} \end{aligned}$$
(4.19)

and we have

$$\begin{aligned} 2{\textsf{Im}}(\varPhi K^2u, \varPhi Au)= & {} \partial _t\Vert \varPhi Ku\Vert ^2+2\theta \Vert \varPhi Ku\Vert ^2\nonumber \\{} & {} +2{\textsf{Im}}(\varPhi [A, K]u, \varPhi Ku)+2{\textsf{Im}}([A, \varPhi ]Ku, \varPhi Ku)\nonumber \\{} & {} +2{\textsf{Im}}([\varPhi , K]Au, \varPhi Ku)+2{\textsf{Im}}(\varPhi Au, [K, \varPhi ]Ku).\nonumber \\ \end{aligned}$$
(4.20)

Proof

To see the first equality it is enough to write

$$\begin{aligned} (\varPhi Ku, \varPhi A u)=([\varPhi ,K]u, \varPhi Au)+(K\varPhi u, [\varPhi ,A]u) +(K\varPhi u, A\varPhi u) \end{aligned}$$

and note \( 2{\textsf{Im}}(K \varPhi u, A\varPhi u)=\partial _t(K\varPhi u, \varPhi u) +2\theta (K \varPhi u, \varPhi u)-{\textsf{Re}}((\partial _tK)\varPhi u, \varPhi u)\) for \(\partial _t=iA-\theta \). To see the second equality write

$$\begin{aligned} (\varPhi K^2u, \varPhi Au)&=([\varPhi , K]Ku, \varPhi Au)+(K\varPhi Ku, \varPhi Au)\\&=([\varPhi , K]Ku, \varPhi Au)+(\varPhi Ku, [K,\varPhi ]Au)+(\varPhi Ku, \varPhi K Au)\\&=([\varPhi , K]Ku, \varPhi Au)+(\varPhi Ku, [K,\varPhi ]Au)\\&\quad +(\varPhi Ku, \varPhi [K, A]u)+(\varPhi Ku, \varPhi A Ku)\\&=([\varPhi , K]Ku, \varPhi Au)+(\varPhi Ku, [K,\varPhi ]Au)+(\varPhi Ku, \varPhi [K, A]u)\\&\quad +(\varPhi Ku, [\varPhi , A]Ku)+(\varPhi Ku, A\varPhi Ku) \end{aligned}$$

where the twice of the imaginary part of the first 4 terms on the right-hand side coincide with the last 4 terms on the right-hand side of (4.20). Thus it suffices to show \(2{\textsf{Im}}(\varPhi Ku, A\varPhi Ku)=\partial _t\Vert \varPhi Ku\Vert ^2+2\theta \Vert \varPhi Ku\Vert ^2\) which is clear. \(\square \)

We aim to estimate \(2{\textsf{Im}}(\varPhi {{\hat{P}}_{\theta }}u, \varPhi Au)\). Start with \(2{\textsf{Im}}(\varPhi L^2 u, \varPhi A u)\). Consider \(2{\textsf{Im}}([A, \varPhi ]Lu, \varPhi L u)\). Since \(\partial _t\phi =\omega ^{-1}\phi \) then \([A, \varPhi ]=in\,\textrm{op}({\omega ^{-1}\phi ^{-n}})\) hence

$$\begin{aligned} 2{\textsf{Im}}([A, \varPhi ]Lu, \varPhi L u)=2 n{\textsf{Re}}(\textrm{op}({\omega ^{-1}\phi ^{-n}}) L u, \textrm{op}({\phi ^{-n}}) L u). \end{aligned}$$

Noting \(\phi ^{-n}\#(\omega ^{-1} \phi ^{-n})-\omega ^{-1}\phi ^{-2n}\in S(M^{-1}\omega ^{-1}\phi ^{-2n}, g_{\epsilon })\) we have from Corollary 6.4 and Lemma 6.11 that

$$\begin{aligned} 2{\textsf{Im}}([A, \varPhi ]L u, \varPhi Lu)\ge 2n(1-CM^{-1})\Vert \varPhi ^{\sharp }L u\Vert ^2. \end{aligned}$$
(4.21)

Next estimate \(2{\textsf{Im}}(\varPhi Au, [L, \varPhi ]L u)\). One can write

$$\begin{aligned} \begin{aligned}&\phi ^{-n}\#(\ell \#\phi ^{-n}-\phi ^{-n}\#\ell )= -n\{\ell , \psi \}\omega ^{-1}\phi ^{-2n}+r_1+r_2,\\&\quad r_1\in S(M^{-1}\omega ^{-1}\phi ^{-2n}, g_{\epsilon }),\quad r_2\in S(\phi ^{-2n}, g_{\epsilon }). \end{aligned} \end{aligned}$$
(4.22)

In fact since \(\partial _x^{\alpha }\partial _{\xi }^{\beta }\ell \in S(M^2\langle {\xi }\rangle _{\gamma }^{1-|\beta |}, g_{\epsilon })\) for \(|\alpha +\beta |=3\), Theorem 6.1 and Lemma 4.4 show \( (\ell \#\phi ^{-n}-\phi ^{-n}\#\ell )+i\{\ell , \phi ^{-n}\}\in S(\phi ^{-n}, g_{\epsilon })\). On the other hand one sees \( \{\ell , \phi ^{-n}\}=-in\,\omega ^{-1}\{\ell , \psi \}\phi ^{-n}+in\,\omega ^{-1}\{\ell , \langle {\xi }\rangle _{\gamma }^{-1}\}\phi ^{-n-1}\) in view of (4.5) and \(\omega ^{-1}\{\ell , \langle {\xi }\rangle _{\gamma }^{-1}\}\phi ^{-n-1}\in S(\phi ^{-n}, g_{\epsilon })\) by (4.4). Since \(\{\ell , \psi \}\in S(1, g_{\epsilon })\) Proposition 3.2 and Theorem 6.1 prove (4.22). Therefore from Lemma 6.11 we have

$$\begin{aligned} \big |(\varPhi A u, [L, \varPhi ]Lu)\big |\le & {} n\Vert \textrm{op}({\{\ell , \psi \}})\varPhi ^{\sharp } Au\Vert \Vert \varPhi ^{\sharp }Lu\Vert \\{} & {} +CM^{-1}\Vert \varPhi ^{\sharp } Au\Vert \Vert \varPhi ^{\sharp } Lu\Vert +C\Vert \varPhi Au\Vert \Vert \varPhi Lu\Vert . \end{aligned}$$

Since \( \Vert (\textrm{op}({\{\ell , \psi \}})v\Vert \le (|\kappa |+CM^{-1/2})\Vert v\Vert \) by Proposition 3.2 and Corollary 6.6 one obtains

$$\begin{aligned} |(\varPhi Au, [L, \varPhi ]Lu)|\le n(|\kappa |+CM^{-1/2})\Vert \varPhi ^{\sharp }Au\Vert \Vert \varPhi ^{\sharp }Lu\Vert +C\Vert \varPhi Au\Vert \Vert \varPhi Lu\Vert . \end{aligned}$$

Since the term \(|([\varPhi , L]Au, \varPhi Lu)|\) is estimated similarly one concludes

$$\begin{aligned} \begin{aligned}&2|(\varPhi Au, [L, \varPhi ]Lu)|+2|([\varPhi , L]Au, \varPhi Lu)|\\&\quad \le 2n(|\kappa |+CM^{-1/2})\big (\Vert \varPhi ^{\sharp } Au\Vert ^2 +\Vert \varPhi ^{\sharp } Lu\Vert ^2\big )\\&\qquad +C\big (\Vert \varPhi Au\Vert ^2+\Vert \varPhi Lu\Vert ^2\big ). \end{aligned} \end{aligned}$$
(4.23)

From \([A, L]=-i\,\textrm{op}({\partial _t\ell })\) and \(\partial _t\ell \in S(\langle {\xi }\rangle _{\gamma }, g_{\epsilon })\) it follows that \(\phi ^{-n}\#\phi ^{-n}\#(\partial _t\ell )=(\partial _t\ell )\phi ^{-2n}+r\) with \(r\in S(M^{-1}\langle {\xi }\rangle _{\gamma }\phi ^{-2n}, g_{\epsilon })\) then the estimate

$$\begin{aligned} \begin{aligned}&2|(\varPhi [A, L]u, \varPhi Lu)|\le 2\Vert \textrm{op}({\partial _t\ell \langle {\xi }\rangle _{\gamma }^{-1}})\varPsi ^{\sharp } u\Vert \Vert \varPhi ^{\sharp }Lu\Vert \\&\quad +CM^{-1}\Vert \varPsi ^{\sharp } u\Vert \Vert \varPhi ^{\sharp }Lu\Vert \le (c_0+CM^{-1})\big (\Vert \varPsi ^{\sharp } u\Vert ^2+\Vert \varPhi ^{\sharp }Lu\Vert ^2\big ) \end{aligned} \end{aligned}$$
(4.24)

follows from Lemma 6.11. Thus (4.20), (4.21), (4.23) and (4.24) give

Lemma 4.6

We have

$$\begin{aligned}{} & {} 2{\textsf{Im}}(\varPhi L^2u, \varPhi Au)\ge \partial _t\Vert \varPhi Lu\Vert ^2+(2\theta -C)\Vert \varPhi Lu\Vert ^2\\{} & {} \quad +2n(1-|\kappa |-c_0/2n-CM^{-1/2})\Vert \varPhi ^{\sharp }Lu\Vert ^2 -2n(|\kappa |+CM^{-1/2})\Vert \varPhi ^{\sharp }Au\Vert ^2\\{} & {} \quad -(c_0+CM^{-1/2})\Vert \varPsi ^{\sharp } u\Vert ^2 -C\Vert \varPhi Au\Vert ^2. \end{aligned}$$

Turn to \(-2{\textsf{Im}}(\varPhi A^2u, \varPhi Au)\). Choosing \(K=I\) and \(L=I\) in (4.19) and (4.21) respectively one has

$$\begin{aligned} \begin{aligned}&-2{\textsf{Im}}(\varPhi Au, \varPhi u)=\partial _t\Vert \varPhi u\Vert ^2+2\theta \Vert \varPhi u\Vert ^2 +2{\textsf{Im}}([A, \varPhi ]u, \varPhi u)\\&\quad \ge \partial _t\Vert \varPhi u\Vert ^2+2\theta \Vert \varPhi u\Vert ^2+2n(1-CM^{-1})\Vert \varPhi ^{\sharp } u\Vert ^2. \end{aligned} \end{aligned}$$
(4.25)

Replacing \(\varPhi \) by \(\varPhi ^{2\sharp }\) a repetition of a similar argument shows

$$\begin{aligned} -2{\textsf{Im}}(\varPhi ^{2\sharp } Au, \varPhi ^{2\sharp } u) \ge \partial _t\Vert \varPhi ^{2\sharp } u\Vert ^2+2\theta \Vert \varPhi ^{2\sharp } u\Vert ^2+2n(1-CM^{-1})\Vert \varPhi ^{3\sharp } u\Vert ^2. \end{aligned}$$

Since the left-hand side is bounded as

$$\begin{aligned}&2|(\varPhi ^{2\sharp } Au, \varPhi ^{2\sharp } u)|\le 2(1+CM^{-1})\Vert \varPhi ^{\sharp } A u\Vert \Vert \varPhi ^{3\sharp }u\Vert \\&\quad \le n^{-1}\Vert \varPhi ^{\sharp } A u\Vert ^2+n(1+CM^{-1})\Vert \varPhi ^{3\sharp } u\Vert ^2 \end{aligned}$$

we conclude

$$\begin{aligned} \Vert \varPhi ^{\sharp } A u\Vert ^2\ge n\partial _t\Vert \varPhi ^{2\sharp } u\Vert ^2+2\theta n\Vert \varPhi ^{2\sharp } u\Vert ^2+n^2(1-CM^{-1})\Vert \varPhi ^{3\sharp } u\Vert ^2. \end{aligned}$$
(4.26)

Replacing u by Au in (4.25) one has

$$\begin{aligned} -2{\textsf{Im}}(\varPhi A^2u, \varPhi Au) \ge \partial _t\Vert \varPhi Au\Vert ^2+2\theta \Vert \varPhi A u\Vert ^2 +2n(1-CM^{-1})\Vert \varPhi ^{\sharp }A u\Vert ^2 \end{aligned}$$

where we replace \(\nu \Vert \varPhi ^{\sharp } A u\Vert ^2\) (\(0<\nu <2\)) by the estimate (4.26) to obtain

Lemma 4.7

For any \(0<\nu <2\) the following estimate holds.

$$\begin{aligned} \begin{aligned} -2{\textsf{Im}}(\varPhi A^2u, \varPhi Au)&\ge \partial _t\Vert \varPhi Au\Vert ^2+2\theta \Vert \varPhi A u\Vert ^2\\&\quad +2n(1-\nu /2-CM^{-1})\Vert \varPhi ^{\sharp }A u\Vert ^2\\&\quad +\nu n^2\partial _t\Vert \varPhi ^{2\sharp } u\Vert ^2+2\nu \theta n^2\Vert \varPhi ^{2\sharp } u\Vert ^2\\&\quad +\nu n^3(1-CM^{-1})\Vert \varPhi ^{3\sharp } u\Vert ^2. \end{aligned} \end{aligned}$$
(4.27)

Finally we estimate \({\textsf{Im}}(\varPhi Q u, \varPhi A u)\). Study \({\textsf{Im}}([\varPhi , Q] u, \varPhi A u)\). From Proposition 4.1 and Theorem 6.1 it follows that \(\phi ^{-n}\#(\phi ^{-n}\#\langle {\xi }\rangle _{\gamma }-\langle {\xi }\rangle _{\gamma }\#\phi ^{-n})\in S(\omega ^{-1}\phi ^{-2n}, g_{\epsilon })\) hence Lemma 6.11 shows

$$\begin{aligned} |([\varPhi , \langle {D}\rangle _{\gamma }]u, \varPhi A u)|\le C\Vert \varPhi ^{2\sharp } u\Vert \Vert \varPhi A u\Vert \le C(\Vert \varPhi ^{2\sharp } u\Vert ^2+\Vert \varPhi A u\Vert ^2). \end{aligned}$$

To estimate \({\textsf{Im}}([\varPhi , \textrm{op}({q})] u, \varPhi A u)\) we shall examine that

$$\begin{aligned} \begin{aligned}&\phi ^{-n}\#q-q\#\phi ^{-n}=-in\omega ^{-1}\{\psi , q\}\phi ^{-n}+r_1+r_2,\\&\quad r_1\in S(b\phi ^{-n}, {{\bar{g}}}),\quad r_2\in S(M\omega ^{-1}\phi ^{-n}, g_{\epsilon }). \end{aligned} \end{aligned}$$
(4.28)

Indeed since \(\partial _x^{\alpha }\partial _{\xi }^{\beta }q\in S(M\langle {\xi }\rangle _{\gamma }^{2-|\beta |}, g_{\epsilon })\) for \(|\alpha +\beta |=3\), Proposition 4.1 and Theorem 6.1 show \( \phi ^{-n}\#q-q\#\phi ^{-n}=-i\{\phi ^{-n}, q\}+r\) with \(r\in S(M\omega ^{-1}\phi ^{-n}, g_{\epsilon })\). Note \(\{\phi ^{-n}, q\}=n\omega ^{-1}\{\psi , q\}\phi ^{-n}-n\omega ^{-1}\{\langle {\xi }\rangle _{\gamma }^{-1}, q\}\phi ^{-n-1}/2\) by (4.5) where the second term on the right-hand is \(S(b\phi ^{-n}, {{\bar{g}}})\) because of Lemma 4.1 and (4.4), hence (4.28). Since \(\omega ^{-1}\{\phi ^{-n}, q\}\in S(M^{-1/2}\omega ^{-1}b\phi ^{-n}, {{\bar{g}}})\) by Lemma 4.1 it follows from Lemmas 6.12, 6.11 and (4.28) that

$$\begin{aligned} \begin{aligned} \big |([\varPhi , Q]u, \varPhi A u)\big |&\le CM^{-1/2}\big (\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert ^2+\Vert \varPhi ^{\sharp } A u\Vert ^2\big )\\&\quad +C\Vert \sqrt{Q}\,\varPhi u\Vert ^2+CM\big (\Vert \varPhi Au\Vert ^2+\Vert \varPhi ^{2\sharp } u\Vert ^2\big ). \end{aligned} \end{aligned}$$
(4.29)

Lemma 4.8

The following estimate holds.

$$\begin{aligned} 2{\textsf{Im}}(Q \varPhi u, [\varPhi , A]u)\ge & {} (n-CM^{-1/2})\Vert \sqrt{Q}\, \varPhi ^{\sharp } u\Vert ^2\\{} & {} -CM^{-1/2}\Vert \varPhi ^{3\sharp } u\Vert ^2-C\Vert \sqrt{Q}\,\varPhi u\Vert ^2-CM\Vert \varPhi ^{2\sharp } u\Vert ^2. \end{aligned}$$

Proof

Note \(2{\textsf{Im}}(Q \varPhi u, [\varPhi , A]u)=2n{\textsf{Re}}\big (Q \textrm{op}({\phi ^{-n}})u, \textrm{op}({\omega ^{-1}\phi ^{-n}})u\big )\) and write \(\omega ^{-1}\phi ^{-n}=\omega ^{-1/2}\#(1+k)\#(\omega ^{-1/2}\phi ^{-n})\) and \(\omega ^{-1/2}\#\phi ^{-n}=(1+{{\tilde{k}}})\#(\omega ^{-1/2}\phi ^{-n})\) with \(k, {{\tilde{k}}}\in S(M^{-1}, g_{\epsilon })\) by use of Lemma 6.10, then one can write

$$\begin{aligned} \big (Q \textrm{op}({\phi ^{-n}})u, \textrm{op}({\omega ^{-1}\phi ^{-n}})u\big )= & {} \big (\textrm{op}({1+{{\bar{k}}}})Q\textrm{op}({1+{{\tilde{k}}}})\varPhi ^{\sharp }u, \varPhi ^{\sharp } u)\\{} & {} +\big (\textrm{op}({1+{{\bar{k}}}})[\textrm{op}({\omega ^{-1/2}}), Q]\varPhi u, \varPhi ^{\sharp } u) \end{aligned}$$

where \([\textrm{op}({\omega ^{-1/2}}), Q]=\sum _{i=1}^3\textrm{op}({r_i})\) and

$$\begin{aligned} r_1\in S(M^{-1/2}\omega ^{-3/2}b, {{\bar{g}}}),\;\;r_2\in S(\omega ^{-1/2} b, {{\bar{g}}}),\;\; r_3\in S(M\omega ^{-3/2}, g_{\epsilon }). \end{aligned}$$
(4.30)

In fact \(\omega ^{-1/2}\#\langle {\xi }\rangle _{\gamma }-\langle {\xi }\rangle _{\gamma }\#\omega ^{-1/2}\in S(\omega ^{-3/2}, g_{\epsilon })\) is clear from Proposition 4.1 and Theorem 6.1. Similarly \(\omega ^{-1/2}\#q-q\#\omega ^{-1/2}+i\{\omega ^{-1/2}, q\}\in S(M\omega ^{-3/2}, g_{\epsilon })\), where

$$\begin{aligned} \{\omega ^{-1/2}, q\}=\omega ^{-5/2}(t-\psi )\{\psi , q\}/2-\omega ^{-5/2}\{\langle {\xi }\rangle _{\gamma }^{-1}, q\}/4. \end{aligned}$$
(4.31)

The first term on the right-hand is \(S(M^{-1/2}\omega ^{-3/2}b, {{\bar{g}}})\) because of Lemma 4.1 and \((t-\psi )\in S(\omega , g_{\epsilon })\) and the second term is \(S(\omega ^{-1/2}b, {{\bar{g}}})\) thanks to Lemma 4.1 and \(\omega ^{-2}\le \langle {\xi }\rangle _{\gamma }\), hence (4.30) is examined. Applying Lemma 6.12 we have

$$\begin{aligned} \big |(\textrm{op}({1+{{\bar{k}}}})[\textrm{op}({\omega ^{-1/2}}), Q]\varPhi u, \varPhi ^{\sharp } u)\big |\le & {} CM^{-1/2}\big (\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert ^2+\Vert \varPhi ^{3\sharp } u\Vert ^2\big )\\{} & {} +C\Vert \sqrt{Q}\,\varPhi u\Vert ^2+CM\Vert \varPhi ^{2\sharp } u\Vert ^2. \end{aligned}$$

Turn to \(\big (\textrm{op}({1+{{\bar{k}}}})Q\textrm{op}({1+{{\tilde{k}}}})\varPhi ^{\sharp }u, \varPhi ^{\sharp } u)\). Since \({{\bar{k}}}\#(q+{\bar{\lambda }}\langle {\xi }\rangle _{\gamma })\in S(M^{-1}b^2, {{\bar{g}}})\) from Lemma 6.12 one has \( \big |(\textrm{op}({{{\bar{k}}}})Q\varPhi ^{\sharp } u, \varPhi ^{\sharp } u)\big | \le CM^{-1}\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert ^2\). Terms such as \(\big |(Q\textrm{op}({{{\tilde{k}}}})\varPhi ^{\sharp } u, \varPhi ^{\sharp } u)\big |\) are estimated similarly. To conclude the proof it suffices to apply Lemma 6.8 to \((Q\varPhi ^{\sharp } u, \varPhi ^{\sharp } u)\). \(\square \)

Lemma 4.9

There exists \(c_1>0\) such that

$$\begin{aligned} |((\partial _tQ)\varPhi u, \varPhi u)|\le (c_1+CM^{-1/2})(\Vert \sqrt{Q}\,\varPhi ^{\sharp }u\Vert ^2+\Vert \varPsi ^{\sharp } u\Vert ^2). \end{aligned}$$
(4.32)

Proof

Write \(\phi ^{-n}\#\partial _tq\#\phi ^{-n}=(\omega ^{1/2}\langle {\xi }\rangle _{\gamma }\phi ^{-n})\#r\#(\omega ^{-1/2}\phi ^{-n})\) with \(r\in S(b, g_{\epsilon })\) by using Lemmas 4.1, 6.10 then \( |((\partial _tQ)\varPhi u, \varPhi u)|\le \Vert \textrm{op}({r})\varPhi ^{\sharp } u\Vert \Vert \varPsi ^{\sharp } u\Vert \). Write \((\omega ^{-1/2}\phi ^{-n})\#(1+k)\#(\omega ^{1/2}\phi ^{n})=1\), \((\omega ^{-1/2}\langle {\xi }\rangle _{\gamma }^{-1}\phi ^{n})\#(1+{\tilde{k}})\#(\omega ^{1/2}\langle {\xi }\rangle _{\gamma }\phi ^{-n})=1\) with \(k, {{\tilde{k}}}\in S(M^{-1}, g_{\epsilon })\) by using Lemma 6.10 it is clear

$$\begin{aligned} r=(\omega ^{-1/2}\langle {\xi }\rangle _{\gamma }^{-1}\phi ^{n})\#(1+{\tilde{k}})\#\phi ^{-n}\#(\partial _tq)\#\phi ^{-n}\#(1+k)\#(\omega ^{1/2}\phi ^{n}). \end{aligned}$$

From Theorem 6.1 one sees \(\phi ^{-n}\#(1+k)\#(\omega ^{1/2}\phi ^{n})-\omega ^{1/2}=l\in S(M^{-1}\omega ^{1/2}, g_{\epsilon })\) and \((\omega ^{-1/2}\langle {\xi }\rangle _{\gamma }^{-1}\phi ^{n})\#(1+{\tilde{k}})\#\phi ^{-n}-\omega ^{-1/2}\langle {\xi }\rangle _{\gamma }^{-1}={{\tilde{l}}}\in S(M^{-1}\omega ^{-1/2}\langle {\xi }\rangle _{\gamma }^{-1}, g_{\epsilon })\) hence \(r=(\langle {\xi }\rangle _{\gamma }^{-1}\omega ^{-1/2}+{\tilde{l}})\#(\partial _tq)\#(\omega ^{1/2}+l)=(\langle {\xi }\rangle _{\gamma }^{-1}\omega ^{-1/2})\#(\partial _t q)\#\omega ^{1/2}+{{\tilde{r}}}\) where \({{\tilde{r}}}\in S(M^{-1}b, {{\bar{g}}})\) by Lemma 4.1. Noting \((\langle {\xi }\rangle _{\gamma }^{-1}\omega ^{-1/2})\#(\partial _t q)\#\omega ^{1/2}\in S(b, {{\bar{g}}})\) is independent of n we have \(\Vert \textrm{op}({r})v\Vert \le (c_1+CM^{-1})\Vert \sqrt{Q}\,v\Vert \) from Lemma 6.12 with some \(c_1>0\). Putting \(v=\varPhi ^{\sharp }u\) we conclude the proof. \(\square \)

Choosing \(K=Q\) in (4.19) it follows from (4.29) and Lemmas 4.8, 4.9 that

$$\begin{aligned} 2{\textsf{Im}}(\varPhi Q u, \varPhi Au)\ge & {} \partial _t(Q\varPhi u, \varPhi u)+(\theta -C)\Vert \sqrt{Q}\, \varPhi u\Vert ^2\nonumber \\{} & {} +(n-c_1-CM^{-1/2})\Vert \sqrt{Q}\, \varPhi ^{\sharp } u\Vert ^2-(c_1+CM^{-1/2})\Vert \Psi ^{\sharp }u\Vert ^2\nonumber \\{} & {} -CM^{-1/2}\big (\Vert \varPhi ^{\sharp }Au\Vert ^2+\Vert \varPhi ^{3\sharp } u\Vert ^2\big ) -CM\big (\Vert \varPhi A u\Vert ^2+\Vert \varPhi ^{2\sharp } u\Vert ^2\big ).\nonumber \\ \end{aligned}$$
(4.33)

Writing \(\omega ^{1-k/2}\phi ^{-n}\langle {\xi }\rangle _{\gamma }=(\langle {\xi }\rangle _{\gamma }\omega )(\omega ^{-k/2}\phi ^{-n})\) we have from Lemma 6.11

$$\begin{aligned} (1-CM^{-1})\Vert \varPsi ^{k\sharp } u\Vert \le \Vert \textrm{op}({\langle {\xi }\rangle _{\gamma }\omega })\varPhi ^{k\sharp }u\Vert . \end{aligned}$$
(4.34)

Let \({{\tilde{b}}}\in S(b^{-1}, {{\bar{g}}})\) be given in Proposition 6.1 then \({{\tilde{b}}}\in S(\omega ^{-1}\langle {\xi }\rangle _{\gamma }^{-1}, {{\bar{g}}})\) by (4.3). Hence writing \(\langle {\xi }\rangle _{\gamma }\omega =(\langle {\xi }\rangle _{\gamma }\omega )\#{{\tilde{b}}}\#b\) with \( (\langle {\xi }\rangle _{\gamma }\omega )\#{{\tilde{b}}}\in S(1, {{\bar{g}}})\) there is \({{\hat{c}}}>0\) such that \( \Vert \textrm{op}({\langle {\xi }\rangle _{\gamma }\omega })v\Vert \le {{\hat{c}}}\,\Vert \sqrt{Q}\,v\Vert \) thanks to Theorem 6.2. Replacing v by \(\varPhi ^{k\sharp }u\) we have from (4.34) that

Lemma 4.10

There exist \({{\hat{c}}}>0, c>0\), \(C>0\) such that

$$\begin{aligned} c(1-CM^{-1})\Vert \langle {D}\rangle _{\gamma }^{1/2+k/4}\varPhi u\Vert \le (1-CM^{-1})\Vert \varPsi ^{k\sharp } u\Vert \le {{\hat{c}}}\Vert \sqrt{Q}\, \varPhi ^{k\sharp } u\Vert \nonumber \\ \end{aligned}$$
(4.35)

for \(k=0, 1, 2\).

Proof

It remains to show the left side inequality. Write \(\phi ^{-n}\langle {\xi }\rangle _{\gamma }^{1/2+k/4}=(\omega ^{1/2}\langle {\xi }\rangle _{\gamma }^{1/4})^{-2+k}(\omega ^{1-k/2}\phi ^{-n}\langle {\xi }\rangle _{\gamma })\) then from Lemma 6.11 there is \(c>0\) such that \( c\Vert \langle {D}\rangle _{\gamma }^{1/2+k/4}\varPhi u\Vert \le (1+CM^{-1})\Vert \varPsi ^{k\sharp } u\Vert \) for \(k\le 2\). \(\square \)

In (4.33), replacing \(\Vert \varPsi ^{\sharp }u\Vert ^2\) by the estimate (4.35) one has

Lemma 4.11

We have

$$\begin{aligned} 2{\textsf{Im}}(\varPhi Q u, \varPhi Au)\ge & {} \partial _t(Q\varPhi u, \varPhi u)+(\theta -C)\Vert \sqrt{Q}\, \varPhi u\Vert ^2\\{} & {} +n(1-c_1(1+{{\hat{c}}})/n-CM^{-1/2})\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert ^2\\{} & {} -CM^{-1/2}\big (\Vert \varPhi ^{\sharp }Au\Vert ^2+\Vert \varPhi ^{3\sharp } u\Vert ^2\big ) -CM\big (\Vert \varPhi A u\Vert ^2+\Vert \varPhi ^{2\sharp } u\Vert ^2\big ). \end{aligned}$$

Finally we estimate the lower order term \(B_0A+B_1\). Since \({\tilde{a}_j}\in S(\langle {\xi }\rangle _{\gamma }^j, g_{\epsilon })\) Lemma 6.11 shows

$$\begin{aligned} \begin{aligned} 2\big |(\varPhi B_1 u, \varPhi Au)\big |&\le 2\Vert \textrm{op}({{{\tilde{a}}_1}\langle {\xi }\rangle _{\gamma }^{-1}})\varPhi ^{\sharp } Au\Vert \Vert \varPsi ^{\sharp } u\Vert \\&\quad +CM^{-1}\Vert \varPhi ^{\sharp } Au\Vert \Vert \varPsi ^{\sharp } u\Vert \\&\le ( {\bar{c}}+CM^{-1})(\Vert \varPhi ^{\sharp } Au\Vert ^2+\Vert \varPsi ^{\sharp } u\Vert ^2). \end{aligned} \end{aligned}$$
(4.36)

Similarly \(2|(\varPhi B_0 Au, \varPhi Au)|\le C\Vert \varPhi Au\Vert ^2\). Then from Lemmas 4.6, 4.7, 4.11 and the estimates of lower order term one has

Proposition 4.3

We have

$$\begin{aligned} 2{\textsf{Im}}(\varPhi {{\hat{P}}_{\theta }}u, \varPhi Au)\ge & {} \partial _t\big \{\Vert \varPhi Lu\Vert ^2+\Vert \varPhi Au\Vert ^2 +(Q\varPhi u, \varPhi u)\\{} & {} +\nu n^2\Vert \varPhi ^{2\sharp } u\Vert ^2\big \} +(\theta -CM)\big (\Vert \varPhi L u\Vert ^2+\Vert \varPhi Au\Vert ^2+\Vert \sqrt{Q}\,\varPhi u\Vert ^2\big )\\{} & {} +2n(1-|\kappa |-\nu /2-(c_0+{{\bar{c}}})/2n-CM^{-1/2})\\{} & {} \big (\Vert \varPhi ^{\sharp } Au\Vert ^2+\Vert \varPhi ^{\sharp }L u\Vert ^2\big )\\{} & {} +n(1-{{\hat{c}}}(c_0+{{\bar{c}}})/n-c_1(1+{{\hat{c}}})/n-CM^{-1/2})\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert ^2\\{} & {} +(2\nu \theta n^2-CM)\Vert \varPhi ^{2\sharp } u\Vert ^2+(\nu n^3-CM^{-1/2})\Vert \varPhi ^{3\sharp } u\Vert ^2. \end{aligned}$$

Lemma 4.12

For \(n\ge 1\) there is \(C>0\) such that

$$\begin{aligned} \Vert \varPhi u\Vert \le C\Vert \langle {D}\rangle _{\gamma }^{n} u\Vert ,\quad \Vert u\Vert \le C\Vert \varPhi u\Vert ,\quad \Vert \langle {D}\rangle _{\gamma } u\Vert \le C\Vert \sqrt{Q}\,\varPhi u\Vert . \end{aligned}$$

Proof

Since \(\phi ^{-n}\le C\omega ^{n}\langle {\xi }\rangle _{\gamma }^n\le C'\langle {\xi }\rangle _{\gamma }^n\) then \(\phi ^{-n}\in S(\langle {\xi }\rangle _{\gamma }^n, g_{\epsilon })\) by (4.4) hence the first inequality is clear from Lemma 6.11. Since \(\phi ^{-n}\ge (2\omega )^{-n}\ge C>0\) for \(\phi \le 2\omega \) hence \(1\in S(\phi ^{-n}, g_{\epsilon })\) which proves the second inequality. The third inequality follows from \(\omega \phi ^{-n}\langle {\xi }\rangle _{\gamma }\ge C\omega ^{1-n}\langle {\xi }\rangle _{\gamma }\ge C'\langle {\xi }\rangle _{\gamma }\) and Lemma 4.10. \(\square \)

In Proposition 4.3 we fix \(\nu >0\) such that \(1-|\kappa |-\nu /2>0\). Then choose n such that

$$\begin{aligned} 1-|\kappa |-\nu /2-(c_0+{{\bar{c}}})/2n>0,\; 1-{{\hat{c}}}(c_0+{{\bar{c}}})/n-c_1(1+{{\hat{c}}})/n>0 \end{aligned}$$
(4.37)

and fix such a n. Note that (4.37) is always satisfied for any n greater than such a fixed n. Next, for such fixed n, choose M such that the arguments in this section should be justified, namely the assertions in Sect. 6.3 hold with

$$\begin{aligned} m,\;m_i=\omega ^k\langle {\xi }\rangle _{\gamma }^s\phi ^{l},\quad |k|\le 2,\;|s|\le 1,\; |l|\le n \end{aligned}$$
(4.38)

and the coefficients of the last four terms in Proposition 4.3 and that of Lemma 4.10 will be positive, and fix such a M then choose \(\gamma \) such that \(\gamma \ge M^{4}\) and \(\gamma \ge {\bar{\lambda }}M^{2}\) and fix such a \(\gamma \), while \(\theta \) is assumed to be free still. Once M and \(\gamma \) are fixed, denoting by \(g_0\) the metric \({\underline{g}}\) with \(\gamma =1\), there are \(C, C_s\) such that

$$\begin{aligned} \langle {\xi }\rangle ^s/C_s\le \langle {\xi }\rangle _{\gamma }^s\le C_s\langle {\xi }\rangle ^s,\quad g_0/C\le G\le Cg_0 \end{aligned}$$

then \(S(\langle {\xi }\rangle _{\gamma }^s, G)=S(\langle {\xi }\rangle ^s, g_0)=S^s\). In particular, \(\Vert \langle {D}\rangle _{\gamma }^s\cdot \Vert \) is equivalent to \(\Vert \langle {D}\rangle ^s\cdot \Vert \). The range of t is consequently fixed if M is fixed by (3.4). As long as \(\gamma \) is fixed, it is allowed to write \(\langle {\xi }\rangle _{\gamma }\) as \(\langle {\xi }\rangle \). After fixing n, M, \(\gamma \) and taking Lemma 4.10 into account we have

Proposition 4.4

There exist \(c>0\), \(c^*>0\), \(\delta _0>0\), \(\theta _0>0\) such that for \(|t|\le \delta _0\), \(\theta \ge \theta _0\) one has

$$\begin{aligned} 2{\textsf{Im}}(\varPhi {{\hat{P}}_{\theta }}u, \varPhi Au)\ge & {} \partial _t\big \{\Vert \varPhi Au\Vert ^2+\Vert \varPhi L u\Vert ^2+(Q\varPhi u, \varPhi u) +c^*\Vert \varPhi ^{2\sharp } u\Vert ^2\big \}\\{} & {} +c\,\theta \big (\Vert \varPhi Au\Vert ^2+\Vert \varPhi L u\Vert ^2+\Vert \sqrt{Q}\, \varPhi u\Vert ^2+\Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert ^2\big )\\{} & {} +c\big (\Vert \varPhi ^{\sharp } Au\Vert +\Vert \varPhi ^{\sharp } Lu\Vert ^2+\Vert \sqrt{Q}\,\varPhi ^{\sharp } u\Vert +\Vert \langle {D}\rangle ^{3/4}\varPhi u\Vert ^2\big ). \end{aligned}$$

Definition 4.2

Denote

$$\begin{aligned} {\mathcal {{\tilde{E}}}^2}(u)= & {} \Vert \varPhi A u\Vert ^2+\Vert \varPhi L u\Vert ^2 +(Q\varPhi u, \varPhi u) +c^*\Vert \varPhi ^{2\sharp } u\Vert ^2,\\ {\mathcal {{\tilde{E}}}^2_{\sharp }}(u)= & {} \Vert \varPhi ^{\sharp } Au\Vert ^2+\Vert \varPhi ^{\sharp } L u\Vert ^2+\Vert \varPhi ^{\sharp } \sqrt{Q}\, u\Vert ^2+\Vert \langle {D}\rangle ^{3/4}\varPhi u\Vert ^2. \end{aligned}$$

Denote the substitution of A with \(D_t\) in the definition \({\mathcal {{\tilde{E}}}^2}(u)\) and \({\mathcal {{\tilde{E}}}^2_{\!\sharp }}(u)\) as \({{\mathcal {E}}^2}(u)\) and \({ {\mathcal {E}}_{\sharp }^2}(u)\) respectively.

To effectively utilize Proposition 4.4, noting that \(\ell ^2\in S(M^{-2}\langle {\xi }\rangle _{\gamma }^2, G)\) we introduce

$$\begin{aligned} L^{\dag }=\textrm{op}({b_1})=\textrm{op}({(\ell ^2+{\bar{\lambda }}\langle {\xi }\rangle _{\gamma })^{1/2}}),\quad b_1^2=\ell ^2+{\bar{\lambda }}\langle {\xi }\rangle _{\gamma } \end{aligned}$$

where it can be assumed that \({\bar{\lambda }}\) is chosen so that both Proposition 6.1 and Lemma 6.8 hold.

Lemma 4.13

There is \(C>0\) such that

$$\begin{aligned}{} & {} \Vert \varPhi Au\Vert ^2+\Vert \varPhi L^{\dag } u\Vert ^2+\Vert \varPhi \sqrt{Q}\, u\Vert ^2 +\Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert ^2\le C {\mathcal {{\tilde{E}}}^2}(u)\\{} & {} \quad \le C'(\Vert \varPhi Au\Vert ^2+\Vert \varPhi L u\Vert ^2+\Vert \varPhi \sqrt{Q}\, u\Vert ^2 +\Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert ^2),\\{} & {} {\mathcal {{\tilde{E}}}^2_{\sharp }}(u)/C\le \Vert \varPhi ^{\sharp } Au\Vert ^2+\Vert \varPhi ^{\sharp } L^{\dag } u\Vert ^2+\Vert \varPhi ^{\sharp } \sqrt{Q}\, u\Vert ^2+\Vert \langle {D}\rangle ^{3/4}\varPhi u\Vert ^2\le C{\mathcal {{\tilde{E}}}^2_{\sharp }}(u). \end{aligned}$$

Proof

\(\Vert \sqrt{Q}\,\varPhi u\Vert /C\le \Vert \varPhi \sqrt{Q}\, u\Vert \le C\Vert \sqrt{Q}\, \varPhi u\Vert \) and \(C\Vert \sqrt{Q}\,\varPhi u\Vert ^2\ge (Q\varPhi u, \varPhi u)\) follow from Lemma 6.12 and \((Q\varPhi u, \varPhi u)\ge \Vert \sqrt{Q}\, \varPhi u\Vert ^2/2\ge \Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert ^2/C\) by Lemmas 6.8 and 4.10. Similarly \(\Vert \varPhi L^{\dag } u\Vert \le C(\textrm{op}({b_1^2})\varPhi u, \varPhi u)\le C(\Vert \varPhi L u\Vert +\Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert )\). Moreover one has \(\Vert L\varPhi u\Vert \le C(\Vert \varPhi L u\Vert +\Vert \langle {D}\rangle ^{1/2}\varPhi u\Vert )\) thanks to Proposition 4.1 and Theorem 6.1 hence to finish the proof it suffices to note \(\omega ^{-1}\phi ^{-n}\in S(\langle {\xi }\rangle _{\gamma }^{1/2}\phi ^{-n}, g_{\epsilon })\). The second assertion is proved similarly. \(\square \)

Therefore Proposition 4.4 can be stated as

Proposition 4.5

There exist \(c>0\), \(c^*>0\), \(\delta _0>0\), \(\theta _0>0\) such that for \(|t|\le \delta _0\), \(\theta \ge \theta _0\) one has \(2{\textsf{Im}}(\varPhi {{\hat{P}}_{\theta }}u, \varPhi Au)\ge \partial _t{\mathcal {{\tilde{E}}}^2}(u)+c\,\theta {\mathcal {\tilde{E}}^2}(u) +c\,{\mathcal {{\tilde{E}}}^2_{\!\sharp }}(u)\).

4.3 Estimates of higher order derivatives

Recall that n, M, \(\gamma \) are fixed such that the assertions in Sect. 6.3 hold with m or \(m_i\) in (4.38). For notational simplicity, we write

$$\begin{aligned} {\mathcal {{\tilde{E}}}}(\langle {D}\rangle ^su)={\mathcal {\tilde{E}}_{\!s}}(u),\quad {\mathcal {\tilde{E}}_{\sharp }}(\langle {D}\rangle ^su)={\mathcal {{\tilde{E}}}_{\sharp s}}(u). \end{aligned}$$

Lemma 4.14

There is \(C_s>0\) such that

$$\begin{aligned} \Vert \varPhi A u\Vert _s^2+\Vert \varPhi L^{\dag }u\Vert _s^2+\Vert \varPhi \sqrt{Q}\, u\Vert _s^2 +\Vert \varPhi u\Vert _{s+1/2}^2\le & {} C_s{\mathcal {{\tilde{E}}}_{\!s}^2}(u),\\ \Vert \varPhi ^{\sharp } A u\Vert _s^2+\Vert \varPhi ^{\sharp }L^{\dag } u\Vert _s^2+\Vert \varPhi ^{\sharp } \sqrt{Q}\, u\Vert _s^2+\Vert \varPhi u\Vert _{s+3/4}^2\le & {} C_s{\mathcal {{\tilde{E}}}^2_{\sharp s}}(u). \end{aligned}$$

Proof

The proof is clear from Lemma 4.13 and Corollaries 6.3, 6.5. \(\square \)

Estimate \(\langle {D}\rangle ^su\), \(s\in {{\mathbb {R}}}\). Noting \(\langle {D}\rangle ^s{{\hat{P}}_{\theta }}={{\hat{P}}_{\theta }}\langle {D}\rangle ^s+[\langle {D}\rangle ^s, {{\hat{P}}}]\) we consider \(|(\varPhi [\langle {D}\rangle ^s, {{\hat{P}}}]u, \varPhi A\langle {D}\rangle ^su)|\). Write \({{\hat{P}}_{\theta }}\) as

$$\begin{aligned} {{\hat{P}}_{\theta }}=-A^2+H+B_0'A+B_1',\quad H=\textrm{op}({\ell ^2+q})=\textrm{op}({h}) \end{aligned}$$
(4.39)

where \(B'_i=\textrm{op}({{{\tilde{a}}'_i}})\), \({{\tilde{a}}'_i}\in S^i\). From Theorem 6.1 and Lemma 6.7 we can write

$$\begin{aligned} \langle {\xi }\rangle ^s\#h-h\#\langle {\xi }\rangle ^s =r_1+r_2+{{\tilde{r}}},\quad r_1\in S(\langle {\xi }\rangle ^sb, {{\bar{g}}}),\;\; r_2\in S(\langle {\xi }\rangle ^sb_1, {{\bar{g}}}),\;\;\; {\tilde{r}}\in S^s \end{aligned}$$

then it is clear from Corollaries 6.5 and 6.3 that

$$\begin{aligned} |(\varPhi [\langle {D}\rangle ^s, H]u, \varPhi A\langle {D}\rangle ^s u)|\le C\Vert \varPhi Au\Vert _s(\Vert \varPhi L^{\dag } u\Vert _s+\Vert \varPhi \sqrt{Q} u\Vert _s). \end{aligned}$$
(4.40)

Similarly it follows from Corollary 6.3 that

$$\begin{aligned} \begin{aligned} |(\varPhi [\langle {D}\rangle ^s, B'_0]Au, \varPhi A\langle {D}\rangle ^su)|&\le C\Vert \varPhi A u\Vert _s^2,\\ |(\varPhi [\langle {D}\rangle ^s, B'_1]u, \varPhi A \langle {D}\rangle ^s u)|&\le C\Vert \varPhi u\Vert _s\Vert \varPhi A u\Vert _s. \end{aligned} \end{aligned}$$
(4.41)

Proposition 4.6

For any \(s\in {{\mathbb {R}}}\) there exist \(c_s, \theta _s>0\) such that for \(|t|\le \delta _0\), \(\theta \ge \theta _s\) one has

$$\begin{aligned} 2{\textsf{Im}}(\varPhi \langle {D}\rangle ^s{{\hat{P}}_{\theta }}u, \varPhi A\langle {D}\rangle ^su) \ge \partial _t{\mathcal {{\tilde{E}}}_{\!s}^2}( u) +c_s\theta {\mathcal {{\tilde{E}}}_{\!s}^2}( u)+c_s{\mathcal {{\tilde{E}}}_{\sharp s}^2}(u). \end{aligned}$$

Proof

Write \(2{\textsf{Im}}(\varPhi \langle {D}\rangle ^s{{\hat{P}}_{\theta }}u, \varPhi A\langle {D}\rangle ^s u)\) as a sum

$$\begin{aligned} 2{\textsf{Im}}(\varPhi {{\hat{P}}_{\theta }}\langle {D}\rangle ^s u, \varPhi A\langle {D}\rangle ^s u) +2{\textsf{Im}}(\varPhi [\langle {D}\rangle ^s, {{\hat{P}}}]u, \varPhi A\langle {D}\rangle ^s u) \end{aligned}$$

and apply Proposition 4.4 to the first term. In view of (4.40) and (4.41), taking Lemma 4.14 into account, the term \(|(\varPhi [\langle {D}\rangle ^s, {{\hat{P}}}]u, \varPhi A\langle {D}\rangle ^s u)|\) is absorbed in \(\theta {\mathcal {{\tilde{E}}}_{\!s}^2}(u)\) choosing \(\theta \) large. \(\square \)

Proposition 4.7

Let \(|\tau |\le \delta _0\). For any \(s\in {{\mathbb {R}}}\) there are \(C_s, C'_s>0\) such that

$$\begin{aligned} \begin{aligned} \sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+1-j}&\le C_s\Bigg ({{\mathcal {E}}_s}(u(t))+\int _{\tau }^t{{\mathcal {E}}_{\sharp s}}(u(t'))dt'\Bigg )\\&\le C_s'\Bigg (\sum _{j=0}^1\Vert D_t^ju(\tau )\Vert _{s+n+1-j}+\int _{\tau }^t\Vert {{\hat{P}}}u(t')\Vert _{n+s}dt'\Bigg ) \end{aligned} \end{aligned}$$
(4.42)

holds for any \(u\in \cap _{j=0}^2C^j([\tau , \delta _0]; H^{s+n+2-j})\).

Proof

Replacing u by \(e^{-\theta t}u\) and noting \(Ae^{-\theta t}=e^{-\theta t}D_t\), \({{\hat{P}}_{\theta }}e^{-\theta t}=e^{-\theta t}{{\hat{P}}}\) it follows from Proposition 4.6 that

$$\begin{aligned} 2e^{-2\theta t}\Vert \varPhi \langle {D}\rangle ^s{{\hat{P}}}u\Vert \Vert \varPhi \langle {D}\rangle ^s D_t u\Vert \ge \partial _t\big \{e^{-2\theta t}{{\mathcal {E}}_s^2(u(t))}\big \}+c_se^{-2\theta t}{ {\mathcal {E}}_{\sharp s}^2}(u(t)). \end{aligned}$$

If we integrate from \(\tau \) to t (\(-\delta _0\le \tau <t\le \delta _0\)) and noting Lemma 4.12 we have

$$\begin{aligned} {{\mathcal {E}}_s^2}(u(t))+ & {} \int _{\tau }^t{{\mathcal {E}}_{\sharp s}^2}(u(t'))dt'\le C_s{{\mathcal {E}}_s^2}(u(\tau ))\\+ & {} C_s\int _{\tau }^t\Vert {{\hat{P}}}u(t')\Vert _{n+s}\Vert \varPhi \langle {D}\rangle ^s D_t u(t')\Vert dt'. \end{aligned}$$

Denoting \(K=\sup _{\tau \le t'\le t}\big \{{{\mathcal {E}}_s}(u(t'))+\int _{\tau }^{t'}{{\mathcal {E}}_{\sharp s}}(u(t_1))dt_1\big \}\) we see that \(K^2\) is bounded by \(C_s'{{\mathcal {E}}_s^2}(u(\tau ))+C_s'K\int _{\tau }^t\Vert {{\hat{P}}}u(t')\Vert _{n+s}dt'\) hence we have

$$\begin{aligned} {{\mathcal {E}}_s}(u(t))+\int _{\tau }^t{{\mathcal {E}}_{\sharp s}}(u(t'))dt'\le C_s''\Bigg ({{\mathcal {E}}_s}(u(\tau )) +\int _{\tau }^{t}\Vert {{\hat{P}}} u(t')\Vert _{n+s}dt'\Bigg ). \end{aligned}$$

In virtue of Lemmas 4.12, 4.14 there exists \(C=C_s\) such that

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+1-j}/C\le {{\mathcal {E}}_s}(u(t))\le C\sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+n+1-j} \end{aligned}$$
(4.43)

from which the proof follows. \(\square \)

Here consider the adjoint operator \({{\hat{P}}^*}=\textrm{op}({\overline{{{\hat{P}}}(t, x, \tau ,\xi )}})\) of \({{\hat{P}}}\) where \(\overline{{{\hat{P}}}(t, x, \tau ,\xi )}\) is obtained from \({{\hat{P}}}(t, x, \tau ,\xi )\) replacing \(a_j(t, x, \xi )\) by \(\overline{ a_j(t, x, \xi )}\). Therefore replacing n by \(-n\) and \(\theta \) by \(-\theta \) the same argument can be repeated to obtain

$$\begin{aligned} \begin{aligned}&2e^{2\theta t}\Vert \varPhi _{-n} \langle {D}\rangle ^s {{\hat{P}}^*}u\Vert \Vert \varPhi _{-n}\langle {D}\rangle ^sD_tu\Vert \\&\quad \ge -\partial _t \big \{e^{2\theta t}({{\mathcal {E}}^{*}_s})^2(u)\big \} +c_se^{2\theta t}({{\mathcal {E}}_{\sharp s}^*})^2(u) \end{aligned} \end{aligned}$$
(4.44)

where we have set

$$\begin{aligned} ({{\mathcal {E}}^{*}_s})^2(u)= & {} \Vert \varPhi _{-n} \langle {D}\rangle ^s D_t u\Vert ^2+\Vert \varPhi _{-n} L \langle {D}\rangle ^s u\Vert ^2\\{} & {} +(Q\varPhi _{-n} \langle {D}\rangle ^s u, \varPhi _{-n} \langle {D}\rangle ^s u)+c^*\Vert \varPhi ^{2\sharp }_{-n} \langle {D}\rangle ^s u\Vert ^2,\\ ({{\mathcal {E}}_{\sharp s}^*})^2(u)= & {} \Vert \varPhi ^{\sharp }_{-n}D_tu\Vert ^2_s+\Vert \varPhi ^{\sharp }_{-n} L u\Vert ^2_s+\Vert \varPhi ^{\sharp }_{-n} \sqrt{Q}\, u\Vert ^2_s+\Vert \varPhi _{-n} u\Vert ^2_{s+3/4} \end{aligned}$$

and \(\varPhi _{-n}^{k\sharp }=\textrm{op}({\omega ^{-k/2}\phi ^n})\), \(\varPhi ^{0\sharp }_{-n}=\varPhi _{-n}\) and \(L^{\dag }\) and \(\sqrt{Q}\) are as before. It is clear from \(\langle {\xi }\rangle _{\gamma }^{-1}\le C\phi \le C'\) that

$$\begin{aligned} \Vert \langle {D}\rangle ^{-n} u\Vert /C\le \Vert \varPhi _{-n} u\Vert \le C\Vert u\Vert . \end{aligned}$$
(4.45)

Since the proof of Lemma 4.10 shows \(C\Vert \varPhi _{-n}\sqrt{Q}u\Vert \ge \Vert \textrm{op}({\omega \phi ^n\langle {\xi }\rangle })u\Vert \) noting \(\langle {\xi }\rangle ^{-n}\le (2\omega \phi )^n\le C\omega \phi ^n\) by (4.4) one has

$$\begin{aligned} \Vert \langle {D}\rangle ^{-n+1} u\Vert \le C\Vert \varPhi _{-n} \sqrt{Q}\, u\Vert ,\quad n\ge 1. \end{aligned}$$
(4.46)

Integrating (4.44) over \([t, \tau ]\) and repeating the proof of Proposition 4.7 we have

Proposition 4.8

Let \(|\tau |\le \delta _0\). For any \(s\in {{\mathbb {R}}}\) there exist \(C_s, C_s'>0\) such that

$$\begin{aligned} \begin{aligned} \sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+1-n-j}&\le C_s\Bigg ({{\mathcal {E}}^{*}_s}(u(t))+\int _t^{\tau }{{\mathcal {E}}_{\sharp s}^*}(u(t'))dt'\Bigg )\\&\le C'_s\Bigg (\sum _{j=0}^1\Vert D_t^ju(\tau )\Vert _{s+1-j} +\int _{t}^{\tau }\Vert {{\hat{P}}^*}u(t')\Vert _{s}dt'\Bigg ) \end{aligned} \end{aligned}$$
(4.47)

holds for any \(u\in \cap _{j=0}^2C^j([-\delta _0, \tau ]; H^{s+2-j})\).

5 Local existence and uniqueness theorem

In this section, we prove the existence of the solution operator of the localized operator with a finite speed of propagation. Making use of such solution operators we prove the local existence and uniqueness theorem for the original Cauchy problem.

5.1 Local existence theorem

We show the existence and uniqueness of the Cauchy problem for localized \({{\hat{P}}}\).

Theorem 5.1

Let \(|\tau |<\delta _0\), \(s\in {{\mathbb {R}}}\). For any \(f\in L^1((\tau , \delta _0);H^{s+n})\) and \(\phi _j\in H^{s+n+1-j}\) \((j=0, 1)\) there exists a unique solution \(u\in \cap _{j=0}^1C^{j}([\tau , \delta _0];H^{s+1-j})\) to the Cauchy problem

$$\begin{aligned} \left\{ \begin{array}{ll} {{\hat{P}}}u=f,\quad \tau<t<\delta _0,\quad x\in {{\mathbb {R}}}^d,\\ D_t^ju(\tau ,x)=\phi _j(x),\;\;j=0, 1, \quad x\in {{\mathbb {R}}}^d \end{array}\right. \end{aligned}$$
(5.1)

and (4.42) holds for this solution.

Proof

The uniqueness follows from (4.42). We show the existence of u. Consider the anti-linear from

$$\begin{aligned} {{\mathcal {L}}}:{{\hat{P}}^*}\mapsto i(\phi _0, D_t v(\tau ))+i(\phi _1-B_0(\tau )\phi _0, v(\tau ))+\int _{\tau }^{\delta _0}(f, v)dt \end{aligned}$$

on \(\{{{\hat{P}}^*}v; v\in C_0^{\infty }(\{(t,x); t<\delta _0\})\}\) where \(B_0=\textrm{op}({{{\tilde{a}}}_0})\) is given in (4.17). From (4.47) it is seen that \(\big |i(\phi _0, D_t v(\tau ))+i(\phi _1-B_0(\tau )\phi _0, v(\tau ))\big |\) is bounded by

$$\begin{aligned}&C(\Vert \phi _0\Vert _{s+n+1}+\Vert \phi _1\Vert _{s+n}) (\Vert v(\tau )\Vert _{-s-n}+\Vert D_tv(\tau )\Vert _{-s-n-1})\\&\quad \le C\sum _{j=0}^1\Vert \phi _j\Vert _{s+n+1-j}\int _{\tau }^{\delta _0}\Vert {{\hat{P}}^*}v(t)\Vert _{-s-1}dt \end{aligned}$$

and \(\big |\int _{\tau }^{\delta _0}(f,v)dt\big |\) is estimated by

$$\begin{aligned}&\sup _{\tau \le t\le \delta _0}\Vert v(t)\Vert _{-s-n}\int _{\tau }^{\delta _0}\Vert f(t)\Vert _{s+n}dt\\&\quad \le C\int _{\tau }^{\delta _0}\Vert {{\hat{P}}^*}v(t)\Vert _{-s-1}dt\int _{\tau }^{\delta _0}\Vert f(t)\Vert _{s+n}dt. \end{aligned}$$

Using the Hahn-Banach theorem to extend this form we conclude that there is some \(u\in L^{\infty }([\tau , \delta _0]; H^{s+1})\) such that

$$\begin{aligned} i(\phi _0, D_t v(\tau ))+i(\phi _1-B_0(\tau )\phi _0, v(\tau ))+\int _{\tau }^{\delta _0}(f, v)dt=\int _{\tau }^{\delta _0}(u,{{\hat{P}}^*}v)dt\nonumber \\ \end{aligned}$$
(5.2)

if \(v\in C_0^{\infty }(\{(t,x); t<\delta _0\})\). Thus \({{\hat{P}}}u=f\) in \((\tau , \delta _0)\times {{\mathbb {R}}}^d\) in the distribution sense. Then \(D_t^ju(t)\in L^2([\tau , \delta _0]; H^{s+1-j})\), \(j=0, 1, 2\) thanks to [4, Theorem B.2.9] hence \(u\in \cap _{j=0}^1C^{j}([\tau , \delta _0]; H^{s-j})\). Since \(v(\tau ), D_tv(\tau )\in C_0^{\infty }({{\mathbb {R}}}^d)\) are arbitrary we conclude \(D_t^ju(\tau )=\phi _j\), \(j=0, 1\). Choose \(\phi _{j\nu }\in {{\mathcal {S}}}({{\mathbb {R}}}^d)\), \(f_{\nu }\in {{\mathcal {S}}}({{\mathbb {R}}}^{1+d})\) so that

$$\begin{aligned} \Vert \phi _j-\phi _{j\nu }\Vert _{s+n+1-j}\rightarrow 0,\;\;\int _{\tau }^T\Vert f-f_{\nu }\Vert _{s+n}dt\rightarrow 0\quad (\nu \rightarrow \infty ). \end{aligned}$$

There is \(u_{\nu }(t)\in \cap _{j=0}^2C^{j}([\tau ,\delta _0];H^{s+n+2-j})\) satisfying \({{\hat{P}}}u_{\nu }=f_{\nu }\) and \(D_t^ju_{\nu }(\tau )=\phi _{j\nu }\) hence \(u_{\nu }\) is a Cauchy sequence in \(\cap _{j=0}^1C^j([\tau ,\delta _0];H^{s+1-j})\). The limit as \(\nu \rightarrow \infty \) is the desired solution. Clearly the limit u satisfies (4.42). \(\square \)

The Cauchy problem for the adjoint operator \({{\hat{P}}^*}\) can be treated similarly.

Theorem 5.2

Let \(|\tau |<\delta _0\), \(s\in {{\mathbb {R}}}\). For any \(f\in L^1((-\delta _0, \tau );H^{s+n})\) and \(\phi _j\in H^{s+n+1-j}\) \((j=0, 1)\) there is a unique solution \(u\in \cap _{j=0}^1C^{j}([-\delta _0, \tau ];H^{s+1-j})\) of

$$\begin{aligned} \left\{ \begin{array}{ll} {{\hat{P}}^*}u=f,\quad -\delta _0< t<\tau ,\quad x\in {{\mathbb {R}}}^d,\\ D_t^ju(\tau ,x)=\phi _j(x),\;\;j=0, 1, \quad x\in {{\mathbb {R}}}^d \end{array}\right. \end{aligned}$$
(5.3)

and (4.47) holds for this solution.

Study the solution operator of the Cauchy problem (5.1) with \(\phi _0=\phi _1=0\);

$$\begin{aligned} {{\hat{G}}}: L^1(({ \tau }, \delta _0); H^{s+n})\ni f(t)\mapsto u(t)\in \cap _{j=0}^1C^j([{\tau }, \delta _0]; H^{s+1-j}) \end{aligned}$$

where \({{\hat{P}}}{{\hat{G}}} f=f\) in \((\tau , \delta _0)\times {{\mathbb {R}}}^d\) and the following estimate holds

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^j{{\hat{G}}}f(t)\Vert _{s+1-j} \le C_s\int _{\tau }^t\Vert f(t_1)\Vert _{n+s}dt_1,\quad \tau \le t\le \delta _0. \end{aligned}$$
(5.4)

Proposition 5.1

\({{\hat{G}}}\) has a finite speed of propagation, namely \({{\hat{G}}}\) satisfies the following Definition 5.1 with \(m=2\).

A conic set \(U\subset {{\mathbb {R}}}^d\times ({{\mathbb {R}}}^d{\setminus } 0)\) can be identified with \(\{(x, \xi /|\xi |); (x, \xi )\in U\}\), a subset of \({{\mathbb {R}}}^d\times S^{d-1}\). The topology for conic sets is induced through this identification. By \(\overset{\circ }{U}\) we denote the interior of U and by \(U^c\) the complement of U and \(U\Subset V\) means that U is relatively compact in \(\overset{\circ }{V}\).

Definition 5.1

We say that G has a finite speed of propagation if for any closed conic set \(U_1\) and compact conic set \(U_2\) with \(U_1\cap U_2=\emptyset \) there exists \(\delta >0\) such that for any \(l_i\in {{\mathbb {R}}}\) and \(h_i(x, \xi )\in S^0({{\mathbb {R}}}^{2d})\) with \(\textrm{supp}\,h_i\subset U_i\) one can find \(C>0\) such that the estimate

$$\begin{aligned} \sum _{j=0}^{m-1}\Vert D_t^j\textrm{op}({h_2})G\textrm{op}({h_1})f(t)\Vert _{l_1-j} \le C_{l_1,l_2}\int _{\tau }^t\Vert f(t_1)\Vert _{l_2}dt_1 \end{aligned}$$
(5.5)

holds for any \(f\in L^1((\tau , T); H^{l_2})\) and \(\tau <t\le \min {(\tau +\delta , T)}\).

We postpone the proof of Proposition 5.1 to the next section.

Definition 5.2

Let \(P_i\) (\(i=1, 2\)) be two operators of the form

$$\begin{aligned} -D_t^2+\sum _{j=0}^1\textrm{op}({a_j})D_t^{j},\quad a_j(t, x, \xi )\in C^{\infty }((-T, T); S^{2-j}). \end{aligned}$$
(5.6)

For \(\eta \in {{\mathbb {R}}}^d\), \(|\eta |\ne 0\) we say \(P_1\equiv P_2\) at \((0,\eta )\) if there are \(\delta >0\) and a conic neighborhood W of \((0, \eta )\) such that one can write

$$\begin{aligned} P_1-P_2=\sum _{j=0}^1\textrm{op}({c_j})D_t^j,\quad c_j(t, x, \xi )\in C^{\infty }([-\delta , \delta ]; S^{2-j}\cap S^{-\infty }(W)). \end{aligned}$$

Before going on, we prepare a version of well-known relation on the wave front set under the pullback (e.g. [5, Theorem 8.2.1]). If \(\kappa \) is a diffeomorphism on \({{\mathbb {R}}}^d\) and \(U\subset {{\mathbb {R}}}^d\times ({{\mathbb {R}}}^d{\setminus } 0)\) is a conic set we denote

$$\begin{aligned} \kappa ^*U=\{(x, {^t\!}\kappa '(x)\eta ); (\kappa (x), \eta )\in U\} \end{aligned}$$

and \(\kappa ^*f=f(\kappa (x))\) is the pullback if f is a function on \({{\mathbb {R}}}^d\).

Proposition 5.2

Let \(\kappa \) be a diffeomorphism on \({{\mathbb {R}}}^d\) which is a linear transformation outside a compact set. Let UV be two closed conic sets with \(V\cap \kappa ^*U=\emptyset \) and \(h, k\in S^0\) such that \(\textrm{supp}\, h\subset U\), \(\textrm{supp}\, k\subset V\). Then for any \(p, q\in {{\mathbb {R}}}\) there is C such that

$$\begin{aligned} \Vert \textrm{op}({k})\kappa ^*\textrm{op}({h})v\Vert _p\le C\Vert v\Vert _q,\quad v\in H^q. \end{aligned}$$

We give the proof in the Appendix.

Lemma 5.1

If all critical points \((0, 0, \tau , \xi )\) of \(p=0\) are effectively hyperbolic then for any \(0\ne \eta \in {{\mathbb {R}}}^d\) there exists \(P_{\eta }\) of the form (5.6) such that \(P_{\eta }\equiv P\) at \((0, \eta )\) of whose solution operator has a finite speed of propagation.

Proof

If \(p(0, 0, \tau , \eta )=0\) has a double characteristic root, which is necessarily \(\tau =0\), and \((0, 0, 0, \eta )\) is effectively hyperbolic by assumption. Proposition 2.1 with \({\bar{\xi }}=\eta \) gives a diffeomorphism on \({{\mathbb {R}}}^d\): \(x\mapsto \kappa (x)\). Set \((Tu)(t, x)=u(t, \kappa (x))\) and let \({{\hat{P}}}\) be the localized operator defined in Sect. 3 and denote \(P_{\eta }=T {{\hat{P}}} T^{-1}\). Since \((y(x), \eta (\xi ))=(x, \xi )\) in some neighborhood of \((0, e_d)\) given by (3.3) it is clear that

$$\begin{aligned} P_{\eta } \equiv P \quad \text {at}\quad (0,\eta ). \end{aligned}$$

The solution operator \({{\hat{G}}}\) of \({{\hat{P}}}\), given in Theorem 5.1, has a finite speed of propagation by Proposition 5.1. Set \(G_{\eta }=T {{\hat{G}}} T^{-1}\) then \(P_{\eta } G_{\eta }=I\) is obvious. We examine that \(G_{\eta }\) has a finite speed of propagation. Let \(U_1\), \(U_2\) be closed and compact conic set with \(U_1\cap U_2=\emptyset \). Choose open conic sets \(V_i\) and compact conic sets \(W_i\) such that \((\kappa ^{-1})^*U_2\Subset V_2\Subset W_2\Subset V_1\Subset W_1\) with \(W_1\cap (\kappa ^{-1})^*U_1=\emptyset \) and \(\phi _i\in S^0\) such that \(\phi _1=1\) on \(W_1^c\) with \(\textrm{supp}\,\phi _1\subset V_1^c\) and \(\phi _2=1\) on \(V_2\) with \(\textrm{supp}\, \phi _2\subset W_2\). Write \(\textrm{op}({h_2})G_{\eta }\textrm{op}({h_1})\) as a sum

$$\begin{aligned}{} & {} \textrm{op}({h_2})T\textrm{op}({\phi _2}){{\hat{G}}}\textrm{op}({\phi _1})T^{-1}\textrm{op}({h_1})+\textrm{op}({h_2})T{{\hat{G}}}\textrm{op}({\phi _1^c})T^{-1}\textrm{op}({h_1})\\{} & {} \quad +\textrm{op}({h_2})T\textrm{op}({\phi ^c_2}){{\hat{G}}}\textrm{op}({\phi _1})T^{-1}\textrm{op}({h_1}),\quad \phi _i^c=1-\phi _i. \end{aligned}$$

Since \(\textrm{supp}\,\phi _1^c\subset W_1\), \(W_1\cap (\kappa ^{-1})^*U_1=\emptyset \) and \(\textrm{supp}\,\phi _2^c\subset V_2^c\), \(U_2\cap \kappa ^*V_2^c=\emptyset \) one can apply Proposition 5.2 to \(\textrm{op}({\phi _1^c})T^{-1}\textrm{op}({h_1})\) and \(\textrm{op}({h_2})T\textrm{op}({\phi _2^c})\) to obtain the desired estimates. On the other hand to estimate \( \textrm{op}({\phi _2}){{\hat{G}}}\textrm{op}({\phi _1})\) it suffices to use a finite speed of propagation of \({{\hat{G}}}\) for \( W_2\cap V_1^c=\emptyset \).

If \(p(0, 0, \tau , \eta )=0\) has a simple root one can find \(\delta >0\) and a conic neighborhood U of \((0, \eta )\) and real valued \(\lambda _i(t, x, \xi )\in C^{\infty }((-\delta , \delta )\times U)\), homogeneous of degree 1 in \(\xi \), such that \(\inf _{(-\delta , \delta )\times U}|\lambda _1(t,x,\xi )-\lambda _2(t, x, \xi )|/|\xi |>0\) which satisfy

$$\begin{aligned} p(t, x, \tau , \xi )=-(\tau +\lambda _1(t,x,\xi )\big )\big (\tau +\lambda _2(t, x, \xi )). \end{aligned}$$
(5.7)

Taking Theorem 6.1 into account one can find \(\lambda _{ij}\in C^{\infty }((-\delta ,\delta )\times U)\), \(j\in {{\mathbb {N}}}\), homogeneous of degree \(-j\), such that

$$\begin{aligned} P(t, x, \tau ,\xi )=-\left( \tau +\lambda _1+\sum _{j=0}^{\infty }\lambda _{1j}\right) \#\left( \tau +\lambda _2+\sum _{j=0}^{\infty }\lambda _{2j}\right) \end{aligned}$$

is verified formally. Take a conic neighborhood \(V\Subset U\) of \((0, \eta )\) and \(\chi \in S^0\) such that \(\chi =1\) in \(V\cap \{|\xi |\ge 1\}\) and \(\textrm{supp}\,\chi \subset U\cap \{|\xi |\ge 1/2\}\). Then there is \({\tilde{\lambda }_i}\in S^1\) such that \({\tilde{\lambda }_i}\sim \chi \lambda _i+\sum _{j=0}^{\infty }\chi \lambda _{ij}\) (e.g. [4, Proposition 13.1.3]). If we set \(P_i=D_t+\textrm{op}({{\tilde{\lambda }_i}})\) it is clear that

$$\begin{aligned} P\equiv P_1P_2\quad \text {at}\quad (0, \eta ). \end{aligned}$$

Since \(P_i\) is a first order operator it is easily checked that there is a solution operator \(G_i\) with a finite speed of propagation (\(m=1\) in Definition 5.1) and consequently \(G_2G_1\) has a finite speed of propagation. Then \(P_{\eta }=P_1P_2\) is the desired one whose solution operator is \(G_{\eta }=G_2G_1\). \(\square \)

Theorem 5.3

If all critical points \((0, 0, \tau , \xi )\) of \(p=0\) are effectively hyperbolic then there are \(\delta >0\), \(n>0\) and a neighborhood \(\Omega \) of \(x=0\) such that for any \(|{\tau }|<\delta \) and \(f\in L^1(({\tau },\delta ); H^{s+n})\) there exists \(u\in \cap _{j=0}^1C^j([{\tau }, \delta ]; H^{s+1-j})\) satisfying \(Pu=f\) in \(({\tau },\delta )\times \Omega \) and

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+1-j}\le C_s\int _{\tau }^t\Vert f(t')\Vert _{n+s}dt',\quad \tau \le t\le \delta . \end{aligned}$$
(5.8)

Proof

Thanks to Lemma 5.1, for any \(|\eta |=1\) there are \(\delta _{\eta }>0\), a conic neighborhood \(W_{\eta }\) of \((0, \eta )\), a second order operator \(P_{\eta }\) with solution operator \(G_{\eta }\) with a finite speed of propagation satisfying (5.4) with \(n=n_{\eta }\) and \(P_{\eta }\) satisfying

$$\begin{aligned} P-P_{\eta }=R_{\eta }=\sum _{j=0}^1\textrm{op}({c_{\eta , j}})D_t^j,\;\; c_{\eta , j}\in S^{2-j}\cap S^{-\infty }(W_{\eta }),\;\; |t|\le \delta _{\eta }. \end{aligned}$$
(5.9)

Since \(\{|\eta |=1\}\) is compact there are finite number of \(\eta _i\) and a neighborhood \(\Omega \) of \(x=0\) such that \(\cup _iW_{\eta _i}\supset \Omega \times ({{\mathbb {R}}}^d{\setminus } \{0\})\). Note that \(G_{\eta _i}\) satisfies (5.4) with \(n=\max _i n_{\eta _i}\). Take open conic coverings \(\{U_i\}\), \(\{V_i\}\) of \(\Omega \times ({{\mathbb {R}}}^d{\setminus }\{0\})\) such that \(U_i\Subset V_i\Subset W_{\eta _i}\) and a partition of unity \(\{\alpha _i(x,\xi )\}\), \(\alpha _i\in S^0\) associated to \(\{U_i\}\). If we set \( \sum _i\alpha _i(x,\xi )=\alpha (x)\) then \(\alpha (x)=1\) in a neighborhood of \(x=0\) and we may assume that \(\alpha (x)\) has a compact support. Define

$$\begin{aligned} G=\sum _iG_{\eta _i}\textrm{op}({\alpha _i}) \end{aligned}$$

then it is clear from (5.9) that

$$\begin{aligned} P G f=\sum _i\big (P_{\eta _i}+R_{\eta _i}\big )G_{\eta _i}\textrm{op}({\alpha _i})f =\big (\alpha (x)-{{\tilde{R}}}\big )f \end{aligned}$$
(5.10)

where \({{\tilde{R}}}=-\sum _i R_{\eta _i}G_{\eta _i}\textrm{op}({\alpha _i})\). Set \(R=\alpha {{\tilde{R}}}\) and we show that there are \(\delta _1, \delta '>0\) such that

$$\begin{aligned} \Vert Rf(t)\Vert _{{{\tilde{s}}}}\le C_{{\tilde{s}}}\int _{\tau }^t\Vert f(t')\Vert _{{{\tilde{s}}}}dt',\quad {\tau }\le t\le {\tau }+\delta ',\;\;|\tau |\le \delta _1 \end{aligned}$$
(5.11)

for any \({{\tilde{s}}}\). Take \(\chi _i\in S^0\) be 1 on \(V_i\) with \(\textrm{supp}\,\chi _i\subset W_{\eta _i}\) and \({\tilde{\alpha }}\in C_0^{\infty }({{\mathbb {R}}}^d)\) be 1 in a neighborhood of \(x=0\) with \(\textrm{supp}\,\alpha \Subset \{{\tilde{\alpha }}=1\}\) and write

$$\begin{aligned} \alpha R_{\eta _i}G_{\eta _i}\textrm{op}({\alpha _i})= & {} \alpha R_{\eta _i}(1-{\tilde{\alpha }})G_{\eta _i}\textrm{op}({\alpha _i})\\{} & {} +{\alpha }R_{\eta _i}{\tilde{\alpha }}(\textrm{op}({\chi _i})+\textrm{op}({1-\chi _i}))G_{\eta _i}\textrm{op}({\alpha _i}) \end{aligned}$$

where \(\alpha (1-{\tilde{\alpha }})=0\). Since one can write \({\tilde{\alpha }}\#\chi _i=\kappa _i+r_i\), \(\textrm{supp}\, \kappa _i\subset W_{\eta _i}\), \(\kappa _i\in S^0\), \(r_i\in S^{-n}\) and \({\tilde{\alpha }}\#(1-\chi _i)={\tilde{\kappa }_i}+{{\tilde{r}}_i}\), \(\textrm{supp}\, {\tilde{\kappa }_i}\subset V^c_i\cap \textrm{supp}\,{\tilde{\alpha }}\), \({\tilde{\kappa }_i}\in S^0\), \({{\tilde{r}}_i}\in S^{-n}\) it is clear that \(\Vert \alpha R_{\eta _i}(1-{\tilde{\alpha }})G_{\eta _i}\textrm{op}({\alpha _i})f\Vert _{{{\tilde{s}}}}\), \(\Vert {\alpha }R_{\eta _i}\textrm{op}({\kappa _i+r_i})G_{\eta _i}\textrm{op}({\alpha _i})f\Vert _{{\tilde{s}}}\) and \(\Vert {\alpha }R_{\eta _i}\textrm{op}({{\tilde{r}_i}})G_{\eta _i}\textrm{op}({\alpha _i})f\Vert \) are bounded by

$$\begin{aligned} C\sum _{j=0}^1\Vert D_t^jG_{\eta _i}\textrm{op}({\alpha _i})f\Vert _{{{\tilde{s}}}-n+1-j}\le C'\int _{\tau }^t\Vert f(t')\Vert _{{{\tilde{s}}}}dt' \end{aligned}$$

while \(\Vert \alpha R_{\eta _i}\textrm{op}({{\tilde{\kappa }_i}})G_{\eta _i}\textrm{op}({\alpha _i})f\Vert _{{{\tilde{s}}}}\le C\sum _{j=0}^1\Vert D_t^j\textrm{op}({{\tilde{\kappa }_i}})G_{\eta _i}\textrm{op}({\alpha _i})f\Vert _{{{\tilde{s}}}+2-j} \) to which we apply a finite speed of propagation of \(G_{\eta _i}\) for \((V^c_i\cap \textrm{supp}\,{\tilde{\alpha }})\cap U_i=\emptyset \). Thus (5.11) is proved.

Multiply (5.11) by \(e^{-\theta t}\) (\(\theta >0\)) and integrate from \(\tau \) (\(|\tau |\le \delta _1\)) to t one has

$$\begin{aligned} \int _{\tau }^te^{-\theta t'}\Vert Rf(t')\Vert _{{{\tilde{s}}}}dt'\le \frac{C_{{{\tilde{s}}}}}{\theta }\int _{\tau }^te^{-\theta t'}\Vert f(t')\Vert _{{{\tilde{s}}}}dt',\quad {\tau }\le t\le { \tau }+\delta ' \end{aligned}$$

for any \(f\in L^1(({\tau }, { \tau }+\delta '); H^{{\tilde{s}}})\). Choose \(\theta =\theta _s\) such that \(C_{{{\tilde{s}}}}/\theta <1/2\) then \( Sf=\sum _{l=0}^{\infty }R^lf\) converges in the weighted \(L^1((\tau , \tau +\delta ');H^{{{\tilde{s}}}})\) with the weight \(e^{-\theta t}\) and it yields

$$\begin{aligned} \int _{\tau }^te^{-\theta t'}\Vert Sf(t')\Vert _{{\tilde{s}}}dt' \le 2\int _{\tau }^te^{-\theta t'}\Vert f(t')\Vert _{{{\tilde{s}}}}dt'. \end{aligned}$$
(5.12)

Let \(\beta (x)\in C_0^{\infty }({{\mathbb {R}}}^d)\) be 1 in a neighborhood of \(x=0\) with \(\textrm{supp}\,\beta \Subset \{\alpha =1\}\). Noting \(\beta (\alpha -{{\tilde{R}}})=\beta (I-\alpha {{\tilde{R}}})\) it is clear \(\beta P G S f=\beta (I-R)Sf=\beta f\) hence \( P\big (GSf\big )=f\) on \(\{\beta (x)=1\}\). If \(f\in L^1((\tau , \tau +\delta '); H^{s+n})\) then \(u=G S f\in \cap _{j=0}^1C^j([\tau , \tau +\delta ']; H^{s+1-j})\) and choosing \({{\tilde{s}}}=s+n\) in (5.4), (5.12) one obtains

$$\begin{aligned} e^{-\theta t}\sum _{j=0}^{1}\Vert D_t^ju(t)\Vert _{s+1-j}\le C\int _{\tau }^te^{-\theta t'}\Vert Sf(t')\Vert _{s+n}dt'\\ \le 2C\int _{\tau }^te^{-\theta t'}\Vert f(t')\Vert _{s+n}dt' \end{aligned}$$

which proves (5.8). \(\square \)

5.2 Finite speed of propagation

Here we shall prove Proposition 5.1. Write \({{\hat{P}}_{\theta }}\) in the form (4.39).

Definition 5.3

\(f(t, x, \xi )\in C^{\infty }((-T, T); S^0)\) is called to be spacelike (for \({{\hat{P}}}\)) if there exist \(0<\delta _1\), \(0<\kappa <1\) such that

$$\begin{aligned} \partial _tf\ge \delta _1,\quad 4\kappa (\partial _tf)^2h\ge \{h, f\}^2. \end{aligned}$$
(5.13)

Following [8], for a spacelike f we denote

$$\begin{aligned} {{\bar{f}}}(t, x, \xi )={\left\{ \begin{array}{ll}\exp {(1/f(t, x, \xi ))},\quad f<0,\\ 0,\quad f\ge 0 \end{array}\right. } \end{aligned}$$
(5.14)

and set

$$\begin{aligned} {{\bar{f}}}_1=f^{-1}(\partial _tf)^{1/2}{{\bar{f}}},\quad m=f(\partial _tf)^{-1/2}. \end{aligned}$$
(5.15)

It is clear that \({{\bar{f}}}\), \({{\bar{f}}}_1\), \(\partial _t{{\bar{f}}}\), \(m\in S^0\) and \({{\bar{f}}}-m\# {{\bar{f}}}_1\in S^{-1}\). Take a \(\ell \ge 0\) and with \(w_{\delta }=\langle {\delta \xi }\rangle ^{-\ell }\) \((0< \delta <1)\) we set

$$\begin{aligned} F^{\delta }=\textrm{op}({w_{\delta }{{\bar{f}}}}),\quad F_1^{\delta }=\textrm{op}({w_{\delta }{{\bar{f}}}_1}). \end{aligned}$$

It is easy to see that \(|\partial _{\xi }^{\beta }w^{\pm 1}_{\delta }|\le C_{\beta }w_{\delta }^{\pm 1}\langle {\xi }\rangle ^{-|\beta |}\) with some \(C_{\beta }\) independent of \(\delta \). In the following, all arguments are uniform in \(0<\delta <1\) though we do not mention it.

Definition 5.4

Let \(S_i(t, \cdot )\) be two real functionals on \(C^2((-T, T); H^{s+n+1})\). We say \(S_1\overset{s}{\sim }S_2\) if for any \(\epsilon >0\) there is \(C_{\epsilon }>0\) independent of \(\delta \) such that

$$\begin{aligned} \big |S_1(t, u(t))-S_2(t,u(t))\big |\le C_{\epsilon }\big ({\mathcal {\tilde{E}}^2_{\sharp (s-1/4)}}(u)+{\mathcal {\tilde{E}}_{\!s}^2}(F^{\delta }u)\big ) +\epsilon \Vert \varPhi A F_1^{\delta } u(t)\Vert ^2_s \end{aligned}$$

for any \(u(t)\in C^2((-T, T);H^{s+n+1})\). We write \(S_1\overset{s}{\lesssim }S_2\) or \(S_2\overset{s}{\gtrsim }S_1\) if \(S_1(t, u(t))-S_2(t, u(t))\) is bounded by the right-hand side.

In the following, all constants cC may depend on s but not on \(\delta \) and may change from line to line. The main step to the proof of Proposition 5.1 is to estimate \((\varPhi \langle {D}\rangle ^s[F^{\delta }, {{\hat{P}}_{\theta }}]u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\).

Lemma 5.2

Let \(r_i\in S(\langle {\xi }\rangle ^{l_i}\phi ^{-n_i}, {{\bar{g}}})\) satisfy \(\partial _t r_i\in S(\langle {\xi }\rangle ^{l_i+1/2}\phi ^{-n_i}, {{\bar{g}}})\) \((i=1, 2, 3, 4)\). With \(R_j=\textrm{op}({r_j})\) one has

$$\begin{aligned}{} & {} \Sigma _{i=1}^2l_i=2s+1,\;\;\Sigma _{i=1}^2n_i=2n\;\;\Longrightarrow \;\;(R_1 u, R_2 u)\overset{s}{\sim }\ 0,\\{} & {} \Sigma _{i=1}^3l_i=2s+1/4,\;\;\Sigma _{i=1}^3n_i=2n\;\;\Longrightarrow \;\; (R_1 u, R_2 A R_3 u)\overset{s}{\sim }\ 0,\\{} & {} \Sigma _{i=1}^4l_i=2s-1/2,\;\;\Sigma _{i=1}^4n_i=2n\;\;\Longrightarrow \;\; (R_1 A R_2 u, R_3 A R_4 u)\overset{s}{\sim }\ 0. \end{aligned}$$

Proof

The proof is immediate from Corollary 6.3. \(\square \)

Lemma 5.3

We have

$$\begin{aligned} (\varPhi \langle {D}\rangle ^s[F^{\delta }, H]u, \varPhi A \langle {D}\rangle ^s F^{\delta }u)\overset{s}{\sim }\ -i(\textrm{op}({\{h, f\}/\partial _tf})\varPhi \langle {D}\rangle ^s F^{\delta }_1u, \varPhi \langle {D}\rangle ^s A F^{\delta }_1u). \end{aligned}$$

Proof

Since \((w_{\delta }{{\bar{f}}})\#h-h\#(w_{\delta }{{\bar{f}}})-i\{h, w_{\delta }{{\bar{f}}}\}\in S^0\) it follows from Lemma 5.2

$$\begin{aligned} (\varPhi \langle {D}\rangle ^s[F^{\delta }, H]u, \varPhi A \langle {D}\rangle ^s F^{\delta } u)\overset{s}{\sim }(\varPhi \langle {D}\rangle ^s\textrm{op}({i\{h, w_{\delta }{{\bar{f}}}\}}) u, \varPhi \langle {D}\rangle ^s A F^{\delta } u). \end{aligned}$$

Write \(\{h, w_{\delta }{{\bar{f}}}\}=\{h, {{\bar{f}}}\}w_{\delta }+\{h, w_{\delta }\}{{\bar{f}}}\). Since \(w_{\delta }{{\bar{f}}}-m\#(w_{\delta }{\bar{f}_1})\in S^{-1}\) and \(\{h, {{\bar{f}}\}}w_{\delta }\in S^1\) then \((\varPhi \langle {D}\rangle ^s\textrm{op}({i\{h, {{\bar{f}}}\}w_{\delta }}) u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\) is

$$\begin{aligned} \overset{s}{\sim }(\varPhi \langle {D}\rangle ^s\textrm{op}({i\{h, {\bar{f}}\}w_{\delta }}) u, \varPhi \textrm{op}({m}) \langle {D}\rangle ^s A F^{\delta }_1u). \end{aligned}$$
(5.16)

Since \(r=\langle {\xi }\rangle ^s\#\phi ^{-n}\#\phi ^{-n}\#m-m\#\langle {\xi }\rangle ^s\#\phi ^{-n}\#\phi ^{-n}\in S(\langle {\xi }\rangle ^{s-1/2}\phi ^{-2n}, {{\bar{g}}})\) and \(\{h, {{\bar{f}}}\}w_{\delta }\in S^1\) it follows from Corollary 6.3 that for any \(\epsilon >0\) one has

$$\begin{aligned} \begin{aligned} |(\textrm{op}({i\{h, {{\bar{f}}}\}w_{\delta }}) u, \textrm{op}({r})\langle {D}\rangle ^sAF_1^{\delta }u)|&\le C\Vert \varPhi u\Vert _{s+1/2}\Vert \varPhi A F_1^{\delta } u\Vert _s\\&\le \epsilon \Vert \varPhi A F_1^{\delta } u\Vert _s^2+C_{\epsilon }\Vert \varPhi u\Vert _{s+1/2}^2 \end{aligned} \end{aligned}$$
(5.17)

hence (5.16) \(\overset{s}{\sim }(\varPhi \langle {D}\rangle ^s \textrm{op}({m}) \textrm{op}({i\{h, {{\bar{f}}}\}w_{\delta }}) u, \varPhi \langle {D}\rangle ^s A F^{\delta }_1u)\). Noting \(m\#(\{h, {{\bar{f}}}\}w_{\delta })+\big (\{h, f\}/\partial _tf\big )\#(w_{\delta }{{\bar{f}}_1})\in S^0\) we see that (5.16) is

$$\begin{aligned} \overset{s}{\sim }\ -i(\varPhi \langle {D}\rangle ^s \textrm{op}({\{h, f\}/\partial _tf})F^{\delta }_1 u, \varPhi \langle {D}\rangle ^s A F^{\delta }_1u) \end{aligned}$$

this is still \( \overset{s}{\sim }\ -i(\textrm{op}({\{h, f\}/\partial _tf})\varPhi \langle {D}\rangle ^s F^{\delta }_1u, \varPhi \langle {D}\rangle ^s A F^{\delta }_1u)\) arguing as (5.17) for \(\phi ^{-n}\#\langle {\xi }\rangle ^s\#(\{h, f\}/\partial _tf)-(\{h, f\}/\partial _tf)\#\phi ^{-n}\#\langle {\xi }\rangle ^s\in S(\langle {\xi }\rangle ^{s+1/2}\phi ^{-n}, {{\bar{g}}})\).

For \(\{h, w_{\delta }\}{{\bar{f}}}\) setting \(k=\{h, w_{\delta }\}w_{\delta }^{-1}\in S^1\) one sees \(\{h, w_{\delta }\}{\bar{f}}-k\#(w_{\delta } {{\bar{f}}})\in S^0\) hence \((\varPhi \langle {D}\rangle ^s\textrm{op}({i\{h, w_{\delta }\}{{\bar{f}}}}) u, \varPhi \langle {D}\rangle ^s A F^{\delta } u) \overset{s}{\sim }(\varPhi \langle {D}\rangle ^s\textrm{op}({ik}) F^{\delta }u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\). Since \(\phi ^{-n}\#\langle {\xi }\rangle ^s\#k-k\#\phi ^{-n}\#\langle {\xi }\rangle ^s\in S(\langle {\xi }\rangle ^{s+1/2}\phi ^{-n}, {{\bar{g}}})\) this is still

$$\begin{aligned} \overset{s}{\sim }(\textrm{op}({ik})\varPhi \langle {D}\rangle ^s F^{\delta }u, \varPhi \langle {D}\rangle ^s A F^{\delta } u). \end{aligned}$$

Thanks to Lemma 6.7 we have \(\{h,w_{\delta }\}w_{\delta }^{-1}\in S(b, {{\bar{g}}})+S(b_1, {{\bar{g}}})\) then it follows that \((\textrm{op}({\{h, w_{\delta }\}w_{\delta }^{-1}})\varPhi \langle {D}\rangle ^s F^{\delta }u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\overset{s}{\sim }\ 0\) from Corollary 6.5. \(\square \)

Turn to \((\varPhi \langle {D}\rangle ^s[A^2, F^{\delta }]u, \varPhi \langle {D}\rangle ^s A F^{\delta }u)\) which is a sum

$$\begin{aligned} (\varPhi \langle {D}\rangle ^s [A, F^{\delta }]Au, \varPhi \langle {D}\rangle ^s A F^{\delta }u) +(\varPhi \langle {D}\rangle ^sA [A, F^{\delta }]u, \varPhi \langle {D}\rangle ^s A F^{\delta }u).\nonumber \\ \end{aligned}$$
(5.18)

Noting \([A, F^{\delta }]=\textrm{op}({if^{-2}(\partial _tf)w_{\delta }{{\bar{f}}}})\in S^0\) and \(m\#(f^{-2}(\partial _tf)w_{\delta }{{\bar{f}}})-w_{\delta }{{\bar{f}}_1}\in S^{-1}\) it follows from a repetition of similar arguments that

$$\begin{aligned} (\varPhi \langle {D}\rangle ^s [A, F^{\delta }]Au, \varPhi \langle {D}\rangle ^s A F^{\delta }u)\overset{s}{\sim }\ i\Vert \varPhi \langle {D}\rangle ^s AF^{\delta }_1 u\Vert ^2. \end{aligned}$$
(5.19)

Lemma 5.4

We have

$$\begin{aligned}{} & {} {\textsf{Im}}(\varPhi \langle {D}\rangle ^s A[A, F^{\delta }] u, \varPhi \langle {D}\rangle ^sAv)=-\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^sA v)\\{} & {} \quad +{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A^2 v) -n{\textsf{Re}}(\textrm{op}({\omega ^{-1}\phi ^{-n}})\langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A v)\\{} & {} \quad -n{\textsf{Re}} (\varPhi \langle {D}\rangle ^s[A, F^{\delta }] u, \textrm{op}({\omega ^{-1}\phi ^{-n}}) \langle {D}\rangle ^s A v) -2\theta {\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A v). \end{aligned}$$

Proof

The proof is easy if we note \(\partial _t\phi =\omega ^{-1}\phi \). \(\square \)

Noting \(A^2F^{\delta }=F^{\delta }A^2+A[A, F^{\delta }]+[A, F^{\delta }]A\) and \(\omega ^{-1}\phi ^{-n}\in S(\langle {\xi }\rangle ^{1/2}\phi ^{-n}, {{\bar{g}}})\) it follows from Lemma 5.4 with \(v=F^{\delta } u\) that

$$\begin{aligned}{} & {} {\textsf{Im}}(\varPhi \langle {D}\rangle ^s A[A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\overset{s}{\sim }-\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\\{} & {} \quad +{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } A^2 u) \end{aligned}$$

where replacing \(A^2\) by \(A^2=-{{\hat{P}}}_{\theta }+H+B'_0A+B'_1\) this is still

$$\begin{aligned}{} & {} \overset{s}{\sim }-\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u) -{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}}_{\theta } u)\\{} & {} \quad +{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } H u) \end{aligned}$$

for \(B'_i=\textrm{op}({{{\tilde{a}}'_i}})\), \({{\tilde{a}}'_i}\in S^i\). We check the third term.

Lemma 5.5

\( (\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } H u)\overset{s}{\sim }i(H \varPhi \langle {D}\rangle ^s F^{\delta }_1 u, \varPhi \langle {D}\rangle ^s F^{\delta }_1u)\).

Proof

Since \(h\in S^2\) this is \(\overset{s}{\sim }(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi H \langle {D}\rangle ^s F^{\delta } u)\). From Lemma (6.7) and Corollaries 6.5, 6.3 we see that \(|(\varPhi \langle {D}\rangle ^s[A, F^{\delta }]u, \textrm{op}({\{\phi ^{-n}, h\}})\langle {D}\rangle ^s F^{\delta } u)|\) is bounded by \( C\Vert \varPhi u\Vert _{s+1/2}{\mathcal {{\tilde{E}}}_{\!s}}(F^{\delta }u)\) hence this is still

$$\begin{aligned} \overset{s}{\sim }(H \varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } u)\overset{s}{\sim }(H \varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \textrm{op}({m})\langle {D}\rangle ^s F_1^{\delta } u). \end{aligned}$$

If we move \(\textrm{op}({m})\) to in front of \([A, F^{\delta }]\), any term coming out in the process, is either \(S(b^2\langle {\xi }\rangle ^{2s-1/2}\phi ^{-2n}, {{\bar{g}}})\) or \(S(b_1^2\langle {\xi }\rangle ^{2s-1/2}\phi ^{-2n}, {{\bar{g}}})\) then thanks to Corollary 6.5 such a term is bounded by \({\mathcal {\tilde{E}}_{\!s-1/4}^2}(u)\). Finally, applying similar arguments to \((H \varPhi \langle {D}\rangle ^s \textrm{op}({m}) [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F_1^{\delta } u)\) we conclude the proof. \(\square \)

Together with (5.19) we have

Lemma 5.6

We have

$$\begin{aligned}{} & {} {\textsf{Im}}(\varPhi \langle {D}\rangle ^s[A^2, F^{\delta }]u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\overset{s}{\sim }-\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\\{} & {} \quad -{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}}_{\theta } u)+\Vert \varPhi \langle {D}\rangle ^s AF^{\delta }_1 u\Vert ^2\\{} & {} \quad +{\textsf{Re}}\,(H \varPhi \langle {D}\rangle ^s F^{\delta }_1u, \varPhi \langle {D}\rangle ^s F^{\delta }_1u). \end{aligned}$$

Let \(\kappa \) be the constant in Definition 5.3. It follows from Lemma 5.3 that

$$\begin{aligned}{} & {} \big |(\varPhi \langle {D}\rangle ^s[F^{\delta }, H]u, \varPhi A \langle {D}\rangle ^s F^{\delta }u)\big |\\{} & {} \quad \overset{s}{\lesssim }\kappa \Vert \varPhi \langle {D}\rangle ^s AF^{\delta }_1u\Vert ^2 +4^{-1}\kappa ^{-1}\Vert \textrm{op}({\{h, f\}/\partial _tf})\varPhi \langle {D}\rangle ^s F^{\delta }_1u\Vert ^2 \end{aligned}$$

where, noting \((\{h, f\}/\partial _tf)\#(\{h, f\}/\partial _tf)-(\{h, f\}/\partial _tf)^2\in S^0\), the second term on the right-hand side is \(\overset{s}{\lesssim }4^{-1}\kappa ^{-1}(\textrm{op}({(\{h, f\}/\partial _tf)^2})\varPhi \langle {D}\rangle ^s F^{\delta }_1u, \varPhi \langle {D}\rangle ^s F^{\delta }_1u)\). In view of (5.13) Corollary 6.2 proves

$$\begin{aligned} 4^{-1}\kappa ^{-1}\Vert \textrm{op}({\{h, f\}/\partial _tf})\varPhi \langle {D}\rangle ^s F^{\delta }_1u\Vert ^2\overset{s}{\lesssim }{\textsf{Re}}\,(H \varPhi \langle {D}\rangle ^s F^{\delta }_1u, \varPhi \langle {D}\rangle ^s F^{\delta }_1u). \end{aligned}$$

Then using Lemma 5.6 we obtain

$$\begin{aligned} \begin{aligned}&{\textsf{Im}}(\varPhi \langle {D}\rangle ^s[F^{\delta }, {{\hat{P}}_{\theta }}]u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\\&\quad \overset{s}{\gtrsim }-\partial _t {\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\\&\qquad -{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}}_{\theta } u)+(1-\kappa )\Vert \varPhi AF_1^{\delta }u\Vert ^2_s. \end{aligned} \end{aligned}$$
(5.20)

From Proposition 4.6 and (5.20) there are \(c>0, C>0\) such that

$$\begin{aligned}{} & {} 2{\textsf{Im}}(\varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}_{\theta }} u, \varPhi A\langle {D}\rangle ^s F^{\delta } u)\\{} & {} \quad \ge \partial _t {\mathcal {{\tilde{E}}}^2_{\!s}}(F^{\delta } u)+c\,\theta {\mathcal {{\tilde{E}}}_{\!s}^2}( F^{\delta } u)+c\,{\mathcal {{\tilde{E}}}^2_{\sharp s}}(F^{\delta } u)\\{} & {} \qquad -2\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)\\{} & {} \qquad -2{\textsf{Im}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}}_{\theta } u)-C_{\epsilon }\big ({\mathcal {{\tilde{E}}}_{\sharp (s-1/4)}^2}(u)+{\mathcal {{\tilde{E}}}^2_{\!s}}(F^{\delta } u)\big )\\{} & {} \qquad +(2(1-\kappa )-\epsilon )\Vert \varPhi A F_1^{\delta }u\Vert ^2_{s}. \end{aligned}$$

Choosing \(\epsilon >0\) and \(\theta \) such that \(\epsilon \le 2(1-\kappa )\), \(c\,\theta \ge C_{\epsilon }\) we have

$$\begin{aligned} \begin{aligned}&C\Vert \varPhi \langle {D}\rangle ^s F^{\delta } {{\hat{P}}_{\theta }} u\Vert \big (\Vert \varPhi A \langle {D}\rangle ^s F^{\delta } u\Vert +\Vert \varPhi \langle {D}\rangle ^s u\Vert \big )+C{\mathcal {{\tilde{E}}}_{\sharp (s-1/4)}^2}(u)\\&\quad \ge \partial _t {\mathcal {{\tilde{E}}}^2_{\!s}}(F^{\delta } u)+c\,{\mathcal {{\tilde{E}}}^2_{\sharp s}}(F^{\delta } u) -2\partial _t{\textsf{Re}}(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u). \end{aligned} \end{aligned}$$
(5.21)

Assume now \(\lim _{t\downarrow \tau }\sum _{j=0}^1\Vert D_t^ju(t)\Vert _{l+1-j}=0\) with some l. Since \({{\mathcal {E}}_s}(u(t))\le C\sum _{j=0}^1\Vert D_t^ju(t)\Vert _{n+s+1-j}\) choosing \(\ell \) so that \(\ell \ge n+s-l\) we have

$$\begin{aligned} \lim _{t\downarrow \tau }{{\mathcal {E}}_s}(F^{\delta } u(t))=0,\quad \lim _{t\downarrow \tau }(\varPhi \langle {D}\rangle ^s [A, F^{\delta }]u(t), \varPhi \langle {D}\rangle ^s A F^{\delta } u(t))=0 \end{aligned}$$

for any \(\delta >0\). Since \(|(\varPhi \langle {D}\rangle ^s [A, F^{\delta }] u, \varPhi \langle {D}\rangle ^s A F^{\delta } u)| \le C{\mathcal {\tilde{E}}^2_{\!s-1/4}}(u)\) integrating (5.21) from \(\tau \) to t (\(|t|\le \delta _0\)) we have

$$\begin{aligned} \begin{aligned}&C\int _{\tau }^t\Vert F^{\delta } {{\hat{P}}_{\theta }} u(t_1)\Vert _{n+s}\big (\Vert \varPhi \langle {D}\rangle ^s A F^{\delta } u(t_1)\Vert +\Vert \varPhi \langle {D}\rangle ^s u(t_1)\Vert \big )dt_1\\&\qquad +C\int _{\tau }^t{\mathcal {{\tilde{E}}}^2_{\sharp (s-1/4)}}(u(t_1))dt_1 +C{\mathcal {{\tilde{E}}}^2_{\!s-1/4}}(u(t))\\&\quad \ge {\mathcal {{\tilde{E}}}^2_s}(F^{\delta }u(t))+ c\,\int _{\tau }^t{\mathcal {{\tilde{E}}}^2_{\sharp s}}(F^{\delta }u(t_1))dt_1. \end{aligned} \end{aligned}$$
(5.22)

One can replace \({\mathcal {{\tilde{E}}}_s}(\cdot )\), \({\mathcal {\tilde{E}}_{\sharp s}}(\cdot )\) and \({{\hat{P}}_{\theta }}\) by \({{\mathcal {E}}_s}(\cdot )\), \({{\mathcal {E}}_{\sharp s}}(\cdot )\) and \({{\hat{P}}}\) in (5.22) if we replace u by \(e^{-\theta t}u\). Denote

$$\begin{aligned} \begin{aligned} {{\mathcal {N}}^2_s}(u;t)=\sup _{\tau \le t'\le t}\Bigg \{{{\mathcal {E}}^2_s}(u(t'))+\int _{\tau }^{t'}{{\mathcal {E}}^2_{\sharp s} }( u(t_1))dt_1\Bigg \}. \end{aligned} \end{aligned}$$
(5.23)

Since \(\Vert \varPhi \langle {D}\rangle ^s D_t F^{\delta }u\Vert +\Vert \varPhi \langle {D}\rangle ^s u\Vert \le C({{\mathcal {E}}_s^{1/2}}(F^{\delta }u)+{{\mathcal {E}}_{s-1/4}^{1/2}}(u))\) it follows that

$$\begin{aligned} {{\mathcal {N}}^2_s(F^{\delta }u; t)}\le & {} C\Bigg \{{{\mathcal {N}}^2_{s-1/4}(u; t)}+\big ({{\mathcal {N}}_s(F^{\delta }u; t)}+{{\mathcal {N}}_{s-1/4}(u; t)}\big )\\{} & {} \times \int _{\tau }^t\Vert F^{\delta } {{\hat{P}}} u(t_1)\Vert _{n+s}dt_1\Bigg \} \end{aligned}$$

from which we obtain

$$\begin{aligned} {{\mathcal {N}}_s(F^{\delta }u; t)}\le C\bigg ({{\mathcal {N}}_{s-1/4}(u; t)}+\int _{\tau }^t\Vert F^{\delta } {{\hat{P}}} u(t_1)\Vert _{n+s}dt_1\bigg ). \end{aligned}$$

Letting \(\delta \downarrow 0\) we have

Proposition 5.3

Assume f is spacelike and \(u\in \cap _{j=0}^1C^j([\tau , \delta _0]; H^{l+1-j})\) verifies \(\lim _{t\downarrow \tau }\sum _{j=0}^1\Vert D_t^ju(t)\Vert _{l+1-j}=0\). Then if \({{\mathcal {N}}_{s-1/4}}(u; t)<+\infty \), \(\tau \le t\le \delta _0\) and \(F {{\hat{P}}} u\in L^1([\tau , \delta _0]; H^{n+s})\) with \(F=\textrm{op}({{\bar{f}}})\) one has \({{\mathcal {N}}_{s}}(Fu; t)<+\infty \) for \(\tau _1\le t\le \delta _0\) and

$$\begin{aligned} {{\mathcal {N}}_s(F u; t)}\le C\Bigg ({{\mathcal {N}}_{s-1/4}(u; t)}+\int _{\tau }^t\Vert F{{\hat{P}}} u(t_1)\Vert _{n+s}dt_1\Bigg ). \end{aligned}$$
(5.24)

Let \(\chi (s)\in C^{\infty }({{\mathbb {R}}})\) be nondecreasing such that \(\chi (s)=s\) for \(|s|\le 1\) and \(|\chi (s)|=2\) for \(|s|\ge 2\) and let \(0\le {\tilde{\chi }}(\xi )\in C^{\infty }({{\mathbb {R}}}^d)\) be 0 in a neighborhood of the origin and \({\tilde{\chi }}=1\) for \(|\xi |\ge 1\). For \(w=(y, \eta )\in {{\mathbb {R}}}^{d}\times ({{\mathbb {R}}}^d{\setminus } 0)\) we set

$$\begin{aligned} d_{\epsilon }(x, \xi ; w)=\big \{\Sigma _{j=1}^d\chi ^2(x_j-y_j)+{\tilde{\chi }}(\xi )\big |\xi /|\xi |-\eta /|\eta |\big |^2+\epsilon ^2\big \}^{1/2}. \end{aligned}$$

Note that \(d_{\epsilon }^2(x, \xi ; w)\ge \min {\{1, |x-y|^2\}}+|\xi /|\xi |-\eta /|\eta ||^2+\epsilon ^2\) for \(|\xi |\ge 1\). We often write \(d_{\epsilon }(x,\xi )\) for \(d_{\epsilon }(x,\xi ; w)\) dropping w. It is clear that \(d_{\epsilon }\in S^0\) if \(\epsilon \ne 0\). For \(\nu >0\) we define

$$\begin{aligned} f_{\epsilon }(t, x, \xi ; w)=t-\tau -2\nu \epsilon +\nu d_{\epsilon }(x,\xi ; w). \end{aligned}$$
(5.25)

It is easy to see that \(|\partial _x^{\alpha }\partial _{\xi }^{\beta }d_{\epsilon }|\le C\langle {\xi }\rangle ^{-|\beta |}\) (\(|\alpha +\beta |=1\)) with \(C>0\) independent of \(\epsilon >0\). From \(0\le h\in G(M^{-2}\langle {\xi }\rangle ^2, G)\) one has \( \{h, \nu d_{\epsilon }\}^2\le C\nu ^2q\) in virtue of the Glaeser inequality then there is \(\nu _0>0\) such that \(f_{\epsilon }\) is spacelike for any \(0<\nu \le \nu _0\) and \(\epsilon >0\). We fix such a \(\nu >0\) and denote \(F_{\epsilon }=\textrm{op}({{{\bar{f}}_{\epsilon }}})\).

Lemma 5.7

Assume that \(u\in \cap _{j=0}^1 C^j([\tau , \delta _0]; H^{l+1-j})\), \({{\hat{P}}}u\in L^1([\tau , \delta _0]; H^{l'})\) and \(\lim _{t\downarrow \tau }\sum _{j=0}^1\Vert D_t^ju(t)\Vert _{l+1-j}= 0\) with some \(l, l'\in {{\mathbb {R}}}\). If \(F_{\epsilon _0} {{\hat{P}}} u\in L^1([\tau , \delta _0]; H^{s_0+n})\) with some \(\epsilon _0>0\), \(s_0\in {{\mathbb {R}}}\) then for any \(0<\epsilon <\epsilon _0\) and \(s\le s_0-1/4\) one has \( F_{\epsilon }u\in \cap _{j=0}^1C^j([\tau , \delta _0]; H^{s+1-j})\) and

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^j F_{\epsilon }u(t)\Vert _{s+1-j} \le C\!\int _{\tau }^t\Vert F_{\epsilon _0}{{\hat{P}}}u\Vert _{n+s_0}dt_1 +C\Bigg (R_l(u; t)+\!\int _{\tau }^t\Vert {{\hat{P}}} u\Vert _{l'}dt_1\Bigg ) \end{aligned}$$

where \(R_l(u; t)=\sup _{\tau \le t'\le t}\sum _{j=0}^1(\Vert D_t^ju(t')\Vert _{l+1-j}+\int _{\tau }^{t'}\Vert D_t^ju(t_1)\Vert _{l+1-j}dt_1)\).

Proof

Choose a strictly decreasing sequence \(\epsilon<\epsilon _j<\epsilon _0\) converging to \(\epsilon \) as \(j\rightarrow \infty \). Denoting \(F_j=F_{\epsilon _j}\), \(f_j=f_{\epsilon _j}\) we shall prove

$$\begin{aligned} \begin{aligned} {{\mathcal {N}}_{l+j/4}}(F_j u; t)&\le CR_{l}(u; t)\\&\quad +C\int _{\tau }^t\big \{\Vert F_0 {{\hat{P}}}u(t_1)\Vert _{n+s_0} +\Vert {{\hat{P}}}u(t_1)\Vert _{l'}\big \}dt_1 \end{aligned} \end{aligned}$$
(5.26)

for j with \(l+j/4\le s_0\) by induction on j.Take \(g_j\in S^0\) such that \(\textrm{supp}\,g_j\subset \{f_j<0\}\) and \(\{f_{j+1}<0\}\subset \{g_j=1\}\). Write \(F_{j+1} P \textrm{op}({g_j})u=F_{j+1}\textrm{op}({g_j}) P u+F_{j+1}[P, \textrm{op}({g_j})]u\) then it is seen that \(\Vert F_{j+1}{{\hat{P}}}\textrm{op}({g_j})u\Vert _{l+n+(j+1)/4}\) is bounded by

$$\begin{aligned} C\big \{\Vert F_{0}{{\hat{P}}}u\Vert _{l+n+(j+1)/4}+\sum _{j=0}^1\Vert D^j_tu\Vert _{l+1-j}+\Vert {{\hat{P}}}u\Vert _{l'}\big \} \end{aligned}$$

hence an application of Proposition 5.3 with \(s=l+(j+1)/4\le s_0\), \(F=F_{j+1}\), \(u=\textrm{op}({g_j})u\) gives

$$\begin{aligned} {{\mathcal {N}}_{l+(j+1)/4}}(F_{j+1}\textrm{op}({g_j})u;t)\le & {} C{{\mathcal {N}}_{l+j/4}}(\textrm{op}({g_j})u;t)\nonumber \\{} & {} +C\int _{\tau }^t\big \{\Vert F_{0}{{\hat{P}}}u(t_1)\Vert _{n+s_0}dt_1+\Vert {{\hat{P}}}u(t_1)\Vert _{l'}\big \}dt_1\nonumber \\{} & {} +CR_l(u;t). \end{aligned}$$
(5.27)

Repeating similar arguments one has \({{\mathcal {N}}_{l+j/4}}(\textrm{op}({g_j})u; t)\le C\big \{{{\mathcal {N}}_{l+j/4}}(F_ju; t) +R_l(u; t)\big \}\) and \({{\mathcal {N}}_{l+(j+1)/4}}(F_{j+1}u; t)\le C\big \{{{\mathcal {N}}_{l+(j+1)/4}}(F_{j+1}\textrm{op}({g_j})u; t)+R_l(u; t)\big \}\). Estimating \({{\mathcal {N}}_{l+j/4}}(\textrm{op}({g_j})u; t)\) by use of the inductive hypothesis we conclude that (5.26) holds for maximal \(j=j_0\) satisfying \(l+j/4\le s_0\). Since \(\epsilon <\epsilon _{j_0}\) one can write \({{\bar{f}}_{\epsilon }}-k\#{{\bar{f}}_{j_0}}\in S^{-\infty }\) with some \(k\in S^0\) the assertion follows. \(\square \)

Proof of Proposition 5.1

Take \(0<{ \epsilon }<1/4\) such that \(16\,\epsilon ^2\le |x-{\tilde{x}}|^2+|\xi /|\xi |-{\tilde{\xi }}/|{\tilde{\xi }}||^2\) holds for any \((x, \xi )\in U_1\) and \(({{\tilde{x}}}, {\tilde{\xi }})\in U_2\).Fix a \(0<\nu _1<\nu \) then there are finite many \(w_i=(y_i, \eta _i)\in { U_2}\), \(i=1, \ldots , n\) such that

$$\begin{aligned} {U_2}\subset \cup _{i=1}^n\{f_{\epsilon }(\tau +\nu _1\epsilon , x, \xi ; w_i)=-(2\nu -\nu _1)\epsilon +\nu d_{\epsilon }(x, \xi ; w_i)<0\}. \end{aligned}$$

Write \(f_{i,{ \epsilon }}=f_{ \epsilon }(\tau , x, \xi ; w_i)\), \(F_{i,{\epsilon }}=\textrm{op}({{{\bar{f}}}_{i,{\epsilon }}})\) then it is clear that \(\sum _if_{i, {\epsilon }}<0\) on \([\tau , \tau +\nu _1{\epsilon }]\times { U_2}\), while \(\{f_{i, 2\epsilon }(t, x, \xi )=t-\tau -4\nu \epsilon +\nu d_{2\epsilon }(x, \xi ; w_i)<0\}\) does not intersect with \([\tau , \tau +\nu _1 \epsilon ]\times (U_1\cap \{|\xi |\ge 1\})\). Therefore it follows that \(\int _{\tau }^{t}\Vert F_{i, 2{ \epsilon }}\textrm{op}({h_1}) f\Vert _pdt_1\le C\int _{\tau }^{t}\Vert f\Vert _{l_2}dt_1\) for any \(p\in {{\mathbb {R}}}\).Here we apply Lemma 5.7 with \(u={{\hat{G}}}\textrm{op}({h_1})f\in \cap _{j=0}^1 C^j([\tau , \delta _0]; H^{l_2-n+1-j})\), \(F_{\epsilon _0}=F_{i, 2{\epsilon }}\), \(F_{\epsilon }=F_{i, {\epsilon }}\), \(l=l_2-n\), \(l'=l_2\) to obtain

$$\begin{aligned} \begin{aligned} \sum _{j=0}^1\Vert D_t^jF_{i,{\epsilon }}{{\hat{G}}}\textrm{op}({h_1})f\Vert _{s+1-j}&\le C\int _{\tau }^t\big \{\Vert F_{i, 2{\epsilon }}\textrm{op}({h_1})f\Vert _{p}\\&\quad +\Vert \textrm{op}({h_1})f\Vert _{l_2}\big \}dt_1+R_{l_2-n}({{\hat{G}}}\textrm{op}({h_1})f; t) \end{aligned} \end{aligned}$$
(5.28)

for any \(p, s\in {{\mathbb {R}}}\), \(s\le p-n-1/4\). From (5.4) one has \(R_{l_2-n}({{\hat{G}}}\textrm{op}({h_1})f; t)\le C\int _{\tau }^t\Vert \textrm{op}({h_1})f\Vert _{l_2}dt_1\) hence \( \sum _{j=0}^1\Vert D^j_tF_{i, {\epsilon }} {{\hat{G}}}\textrm{op}({h_1})f\Vert _{l_1-j}\le C\int _{\tau }^t\Vert f\Vert _{l_2}dt_1\) choosing \(s=l_1-1\) and \(l_1\le p-n+3/4\) in (5.28). Then Proposition 5.1 is proved if we remark

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^j\textrm{op}({h_2})v\Vert _{l_1-j}\le C\sum _{j=0}^1\sum _i \Vert D_t^j F_{i, { \epsilon }}v\Vert _{l_1-j}+C\sum _{j=0}^1\Vert D_t^jv\Vert _{l_2-n+1-j} \end{aligned}$$

and take \(v={{\hat{G}}}\textrm{op}({h_1})f\) there. \(\square \)

For the solution operator of the Cauchy problem (5.3) with \(\phi _0=\phi _1=0\);

$$\begin{aligned} {{\hat{G}}^*}: L^1((-\delta _0, { \tau }): H^{s+n})\ni f(t)\mapsto u(t)\in \cap _{j=0}^1C^j([-\delta _0, {\tau }]; H^{s+1-j}) \end{aligned}$$

the same argument for \({{\hat{G}}}\) proves that \({{\hat{G}}^*}\) has a finite speed of propagation. Then repeating the proof of the local existence theorem for P one obtains

Theorem 5.4

If all critical points \((0, 0, \tau , \xi )\) of \(p=0\) are effectively hyperbolic then there are \(\delta >0\), \(n>0\) and a neighborhood \(\Omega \) of \(x=0\) such that for any \(|{\tau }|<\delta \) and \(f\in L^1((-\delta , {\tau }); H^{s+n})\) there exists \(u\in \cap _{j=0}^1C^j([-\delta , {\tau }]; H^{s+1-j})\) satisfying \(P^*u=f\) in \((-\delta , {\tau })\times \Omega \) and

$$\begin{aligned} \sum _{j=0}^1\Vert D_t^ju(t)\Vert _{s+1-j}\le C_s\int _t^{\tau }\Vert f(t')\Vert _{n+s}dt',\quad -\delta \le t\le \tau . \end{aligned}$$

5.3 Local uniqueness theorem

Consider the second order differential operator

$$\begin{aligned} P=\textrm{op}({-\tau ^2+\sum _{j+|\alpha |\le 2, j<2}a_{j,\alpha }(t, x)\xi ^{\alpha }\tau ^j}) \end{aligned}$$
(5.29)

with the principal symbol

$$\begin{aligned} p(t, x, \tau , \xi )=-\tau ^2+\sum _{j+|\alpha |=2, j<2}a_{j,\alpha }(t, x)\xi ^{\alpha }\tau ^j \end{aligned}$$

where \(a_{j,\alpha }(t, x)\) are \(C^{\infty }\) functions defined in a neighborhood of \((t, x)=(0, 0)\in {{\mathbb {R}}}^{1+d}\). For notational convenience we write \(x_0\), \(\xi _0\) instead of t, \(\tau \) and denote \(x=(x_0,x_1,\ldots , x_d)=(x_0, x')\), \(\xi =(\xi _0,\xi _1,\ldots , \xi _d)=(\xi _0, \xi ')\). Let \(y=\kappa (x)\), \(\kappa (0)=0\) be a change of local coordinates x then, in y coordinates, the principal symbol \({{\tilde{p}}}(y, \eta )\) of P is \(p(\kappa ^{-1}(y), {^t\!}\kappa '(x)\eta )\).The following lemma is a special case of a well-known fact (e.g. [14]).

Lemma 5.8

If \((0, {\bar{\xi }})\) is effectively hyperbolic characteristic of p then \((0, {\bar{\eta }})\), \({\bar{\xi }}={^t\!}\kappa '(0){\bar{\eta }}\) is effectively hyperbolic characteristic of \({{\tilde{p}}}\) and vice versa.

Proof

Denote \(\kappa ^{-1}(y)=\lambda (y)\) and \(\kappa (x)=(\kappa _0(x), \kappa _1(x),\ldots , \kappa _d(x))\).If Q is the quadratic form associated with the Hessian of p then we have

$$\begin{aligned} {{\tilde{p}}}(\epsilon y, {\bar{\eta }}+\epsilon \eta )= & {} p(\epsilon \lambda '(0)y+O(\epsilon ^2), {\bar{\xi }}+\epsilon (Cy+{^t\!}\kappa '(0)\eta )+O(\epsilon ^2))\\= & {} \epsilon ^2 Q(\lambda '(0)y, Cy+{^t\!}\kappa '(0)\eta )+O(\epsilon ^3)\quad (\epsilon \rightarrow 0) \end{aligned}$$

where \(C=(c_{ij})\) is the \((d+1)\times (d+1)\) matrix

$$\begin{aligned} c_{ij}=\sum _{0\le k, \ell \le d}\big (\partial ^2\kappa _{\ell }(0)\big /\partial x_k\partial x_i \big )\big (\partial \lambda _k(0)\big /\partial y_j \big ){\bar{\eta }_{\ell }}. \end{aligned}$$

Therefore denoting by \({{\tilde{Q}}}\) the corresponding quadratic form of \({{\tilde{p}}}\) at \((0,{\bar{\eta }})\) one has

$$\begin{aligned} {{\tilde{Q}}}={^t\!}KQK,\quad K=\begin{pmatrix}\lambda '(0)&{}O\\ C&{}{^t\!}\kappa '(0)\end{pmatrix}. \end{aligned}$$

Checking that \(C \kappa '(0)\) is symmetric one concludes that \(F_{{{\tilde{p}}}}(0,{\bar{\eta }})=K^{-1}F_p(0, {\bar{\xi }})K\) hence the assertion. \(\square \)

Next, consider a new system of local coordinates y such that

$$\begin{aligned} y_0=x_0+\epsilon \sum _{j=1}^dx_j^2,\quad y_j=x_j,\;\;j=1,2,\ldots , d \end{aligned}$$
(5.30)

which is so called Holmgren transform (e.g. [15]) where \(\epsilon >0\) is a small positive constant that will be fixed later. It is clear that

$$\begin{aligned} {{\tilde{p}}}(y, \eta )=p(y_0-\epsilon |y'|^2, y', \eta _0, \eta '+2\epsilon \eta _0 y'). \end{aligned}$$
(5.31)

The following lemma is also well-known (e.g. [21]).

Lemma 5.9

If \(p(x, \xi _0, \xi ')=0\) has only real root in \(\xi _0\) for any x in a neighborhood of the origin of \({{\mathbb {R}}}^{1+d}\) and \(\xi '\in {{\mathbb {R}}}^d\) then there exist \(r>0\) and \(\epsilon _0>0\) such that for any \(|\epsilon |\le \epsilon _0\), \({{\tilde{p}}}(y, \eta _0, \eta ')=0\) has only real root in \(\eta _0\) for any \(|y|\le r\) and \(\eta '\in {{\mathbb {R}}}^d\).

Lemma 5.10

One can find a neighborhood \(\Omega \) of the origin of \({{\mathbb {R}}}^{1+d}\) and \({\bar{\epsilon }}>0\), \(\epsilon >0\) such that for any \(f(x)\in C_0^{\infty }(\Omega )\) with \(\textrm{supp}f\subset \{x; x_0\le {\bar{\epsilon }}-\epsilon |x'|^2\}\) there exists \(v(x)\in C^2(\Omega )\) with \(\textrm{supp}\, v\subset \{x; x_0\le {\bar{\epsilon }}-\epsilon |x'|^2\}\) satisfying \(P^*v=f\) in \( \Omega \).

Proof

Since \(P^*=\textrm{op}({p+{{\bar{P}}_1}+{{\bar{P}}_0}})\) then \(P^*\) in the local coordinates y is given by \(P^*=\textrm{op}({{\tilde{p}}+{P'_1}+{P''_0}})\).Thanks to Lemmas 5.8 and 5.9 one can apply Theorem 5.4 to conclude the assertion. \(\square \)

Now prove the local uniqueness theorem. Assume that \(u(x)\in C^2(\Omega )\) verifies \(Pu=0\) in \(\Omega \cap \{x_0>\tau \}\) and \(D_0^ju(\tau , x')=0\), \(j=0, 1\) on \(\Omega \cap \{x_0=\tau \}\) (\(|\tau |\le {\bar{\epsilon }}\)).For \(f\in C_0^{\infty }(\Omega )\) with \(\textrm{supp}f\subset \{x; x_0\le {\bar{\epsilon }}-\epsilon |x'|^2\}\) take v(x) in Lemma 5.10 then one has

$$\begin{aligned} 0=\int _{\tau }^{{\bar{\epsilon }}}\int _{{{\mathbb {R}}}^d}Pu\cdot vdx_0dx'=\int _{\tau }^{{\bar{\epsilon }}}\int _{{{\mathbb {R}}}^d}u\cdot P^*v dx_0dx'=\int _{\tau }^{{\bar{\epsilon }}}\int _{{{\mathbb {R}}}^d}u\cdot f dx_0dx'. \end{aligned}$$

Since f is arbitrary we conclude \(u=0\) in \(\{x; \tau< x_0< {\bar{\epsilon }}-\epsilon |x'|^2\}\). Returning to the original notation \(x_0=t\), \((x_0, x')=(t, x)\) the assertion can be stated as

Theorem 5.5

Assume that all critical points \((0, 0, \tau , \xi )\) of \(p=0\) are effectively hyperbolic. Then there are a neighborhood \(\omega \) of the origin and \(\epsilon >0\) such that if \(u\in C^2(\omega )\) satisfies \((|\tau |\le \epsilon )\)

$$\begin{aligned} {\left\{ \begin{array}{ll} Pu=0,\quad \omega \cap \{t>\tau \},\\ D_t^ju(\tau , x)=0,\quad j=0, 1, \quad x\in \omega \cap \{t=\tau \} \end{array}\right. } \end{aligned}$$

then \(u=0\) in \(\omega \cap \{t>\tau \}\).