Skip to main content
Log in

Applicability of stroke volume variation in patients of a general intensive care unit: a longitudinal observational study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Sinus rhythm (SR) and controlled mechanical ventilation (CV) are mandatory for the applicability of respiratory changes of the arterial curve such as stroke volume variation (SVV) to predict fluid-responsiveness. Furthermore, several secondary limitations including tidal volumes <8 mL/kg and SVV-values within the “gray zone” of 9–13% impair prediction of fluid-responsiveness by SVV. Therefore, we investigated the prevalence of these four conditions in general ICU-patients. This longitudinal observational study analyzed a prospectively maintained haemodynamic database including 4801 transpulmonary thermodilution and pulse contour analysis measurements of 278 patients (APACHE-II 21.0 ± 7.4). The main underlying diseases were cirrhosis (32%), sepsis (28%), and ARDS (17%). The prevalence of SR and CV was only 19.4% (54/278) in the first measurements (primary endpoint), 18.8% (902/4801) in all measurements and 26.5% (9/34) in measurements with MAP < 65 mmHg and CI < 2.5 L/min/m2 and vasopressor therapy. In 69.1% (192/278) of the first measurements and in 65.9% (3165/4801) of all measurements the patients had SR but did not have CV. In 1.8% (5/278) of the first measurements and in 2.5% (119/4801) of all measurements the patients had CV but lacked SR. In 9.7% (27/278) of the first measurements and in 12.8% (615/4801) of all measurements the patients did neither have SR nor CV. Only 20 of 278 (7.2%) of the first measurements and 8.2% of all measurements fulfilled both major criteria (CV, SR) and both minor criteria for the applicability of SVV. The applicability of SVV in ICU-patients is limited due to the absence of mandatory criteria during the majority of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goepfert MS, Richter HP, Eulenburg CZ, Gruetzmacher J, Rafflenbeul E, Roeher K, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013; 119(4):824–36. doi:10.1097/ALN.0b013e31829bd770.

    Article  CAS  PubMed  Google Scholar 

  2. Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95(6):746–55.

    Article  CAS  PubMed  Google Scholar 

  3. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8.

    Article  PubMed  Google Scholar 

  4. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.

    Article  PubMed  Google Scholar 

  5. Michard F, Teboul JL, Richard C. Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med. 2003;29(9):1613.

    Article  PubMed  Google Scholar 

  6. Wiesenack C, Prasser C, Rodig G, Keyl C. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg. 2003;96(5):1254–7.

    Article  PubMed  Google Scholar 

  7. Lakhal K, Ehrmann S, Benzekri-Lefevre D, Runge I, Legras A, Dequin PF, et al. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care. 2011;15(2):R85.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–7.

    Article  PubMed  Google Scholar 

  9. Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18(6):587.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muller L, Louart G, Bousquet PJ, Candela D, Zoric L, de La Coussaye JE, et al. The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med. 2010;36(3):496–503.

    Article  PubMed  Google Scholar 

  11. Monnet X, Bleibtreu A, Ferre A, Dres M, Gharbi R, Richard C, et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit Care Med. 2012;40(1):152–7.

    Article  PubMed  Google Scholar 

  12. Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE. Assessing fluid responsiveness during open chest conditions. Br J Anaesth. 2005;94(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  13. de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med. 2009;37(2):510–5.

    Article  PubMed  Google Scholar 

  14. Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P, et al. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med. 2007;33(1):163–71.

    Article  PubMed  Google Scholar 

  15. Renner J, Gruenewald M, Quaden R, Hanss R, Meybohm P, Steinfath M, et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med. 2009;37(2):650–8.

    Article  PubMed  Google Scholar 

  16. Landsverk SA, Hoiseth LO, Kvandal P, Hisdal J, Skare O, Kirkeboen KA. Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology. 2008;109(5):849–55.

    Article  PubMed  Google Scholar 

  17. Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2013;110(2):207–13.

    Article  CAS  PubMed  Google Scholar 

  18. Hadian M, Severyn DA, Pinsky MR. The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients. J Crit Care. 2011;26(3):328e1-8.

    Article  Google Scholar 

  19. Benes J, Zatloukal J, Kletecka J, Simanova A, Haidingerova L, Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. J Clin Monit Comput. 2014;28(3):225–31.

    Article  PubMed  Google Scholar 

  20. Maguire S, Rinehart J, Vakharia S, Cannesson M. Technical communication: respiratory variation in pulse pressure and plethysmographic waveforms: intraoperative applicability in a North American academic center. Anesth Analg. 2011;112(1):94–6.

    Article  PubMed  Google Scholar 

  21. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112(4):681–5.

    Article  CAS  PubMed  Google Scholar 

  22. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–41.

    Article  PubMed  Google Scholar 

  23. Huber WBC, Umgelter A, Franzen M, Reindl W, Schmid R. Usefullness of stroke volume variation (SVV) and pulse pressure variation (PPV) in an internal ICU: a prospective study on the prevalence of controlled ventilation and sinus rhythm during 632 hemodynamic measurements. Intensive Care Med. 2008;34(Suppl 1):181–268.

    Google Scholar 

  24. Pinsky MR. It is amazing what you can see if you look. J Clin Monit Comput. 2014;28(3):221–2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: how many shades of grey? Crit Care. 2015;19:144.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saugel B, Mair S, Gotz SQ, Tschirdewahn J, Frank J, Hollthaler J, et al. Indexation of cardiac output to biometric parameters in critically ill patients: a systematic analysis of a transpulmonary thermodilution-derived database. J Crit Care. 2015.

  27. Huber W, Mair S, Gotz SQ, Tschirdewahn J, Siegel J, Schmid RM, et al. Extravascular lung water and its association with weight, height, age, and gender: a study in intensive care unit patients. Intensive Care Med. 2013;39(1):146–50.

    Article  PubMed  Google Scholar 

  28. Huber W MS, Götz SQ, Tschirdewahn J, Frank J, Höllthaler J, Phillip V, et al. A systematic database-derived approach to improve indexation of transpulmonary thermodilution-derived global end-diastolic volume. J Clin Monit Comput. 2016. doi:10.1007/s10877-016-9833-9.

    Google Scholar 

  29. Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, von Delius S, et al. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med. 2008;36(8):2348–54.

    Article  PubMed  Google Scholar 

  30. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  31. Litton E, Morgan M. The PiCCO monitor: a review. Anaesth Intensive Care. 2012;40(3):393–409.

    CAS  PubMed  Google Scholar 

  32. Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26(5):347–53.

    Article  PubMed  Google Scholar 

  33. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    Article  PubMed  Google Scholar 

  34. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.

    Article  CAS  PubMed  Google Scholar 

  35. Heinz G. Atrial fibrillation in the intensive care unit. Intensive Care Med. 2006;32(3):345–8.

    Article  PubMed  Google Scholar 

  36. Gamst J, Christiansen CF, Rasmussen BS, Rasmussen LH, Thomsen RW. Pre-existing atrial fibrillation and risk of arterial thromboembolism and death in intensive care unit patients: a population-based cohort study. Crit Care. 2015;19:299.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schweickert WD, Gehlbach BK, Pohlman AS, Hall JB, Kress JP. Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med. 2004;32(6):1272–6.

    Article  PubMed  Google Scholar 

  38. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.

    Article  CAS  PubMed  Google Scholar 

  39. Goodman S, Shirov T, Weissman C. Supraventricular arrhythmias in intensive care unit patients: short and long-term consequences. Anesth Analg. 2007;104(4):880–6.

    Article  PubMed  Google Scholar 

  40. Annane D, Sebille V, Duboc D, Le Heuzey JY, Sadoul N, Bouvier E, et al. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Crit Care Med. 2008;178(1):20–5.

    Article  PubMed  Google Scholar 

  41. Natalini G, Minelli C, Rosano A, Ferretti P, Militano CR, De Feo C, et al. Cardiac index and oxygen delivery during low and high tidal volume ventilation strategies in patients with acute respiratory distress syndrome: a crossover randomized clinical trial. Crit Care (London, England). 2013;17(4):R146.

    Article  Google Scholar 

  42. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.

    Article  CAS  PubMed  Google Scholar 

  43. Freitas FG, Bafi AT, Nascente AP, Assuncao M, Mazza B, Azevedo LC, et al. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies. Br J Anaesth. 2013;110(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  44. Eichhorn V, Trepte C, Richter HP, Kubitz JC, Goepfert MS, Goetz AE, et al. Respiratory systolic variation test in acutely impaired cardiac function for predicting volume responsiveness in pigs. Br J Anaesth. 2011;106(5):659–64.

    Article  CAS  PubMed  Google Scholar 

  45. Funcke S, Sander M, Goepfert MS, Groesdonk H, Heringlake M, Hirsch J, et al. Practice of hemodynamic monitoring and management in German, Austrian, and Swiss intensive care units: the multicenter cross-sectional ICU-CardioMan Study. Ann Intensive Care. 2016;6(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;14(3):R95.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47(2):89–116.

    Article  PubMed  Google Scholar 

  48. Wolf S, Riess A, Landscheidt JF, Lumenta CB, Friederich P, Schurer L. Global end-diastolic volume acquired by transpulmonary thermodilution depends on age and gender in awake and spontaneously breathing patients. Crit Care. 2009;13(6):R202.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA. Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: a meta-analysis of the literature. Medicina intensiva/Sociedad Espanola de Medicina Intensiva y Unidades Coronarias. 2012;36(7):467–74.

    Article  CAS  Google Scholar 

  50. Huber W, Phillip V, Hollthaler J, Schultheiss C, Saugel B, Schmid RM. Femoral indicator injection for transpulmonary thermodilution using the EV1000/VolumeView((R)): do the same criteria apply as for the PiCCO((R))? J Zhejiang Univ Sci B. 2016;17(7):561–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huber W, Hollthaler J, Schuster T, Umgelter A, Franzen M, Saugel B, et al. Association between different indexations of extravascular lung water (EVLW) and PaO2/FiO2: a two-center study in 231 patients. PLoS ONE. 2014;9(8):854–5.

    Article  Google Scholar 

  52. Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115(3):541–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Huber.

Ethics declarations

Conflict of interest

Wolfgang Huber and Bernd Saugel collaborate with Pulsion Medical Systems SE (Feldkirchen, Germany) as members of the Medical Advisory Board and have received refunds for travel expenses and honoraria for giving lectures from Pulsion Medical Systems SE, Feldkirchen, Germany. All other authors have no conflict of interest to disclose.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Due to the type of the study the Ethics Committee waived the need for formal consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mair, S., Tschirdewahn, J., Götz, S. et al. Applicability of stroke volume variation in patients of a general intensive care unit: a longitudinal observational study. J Clin Monit Comput 31, 1177–1187 (2017). https://doi.org/10.1007/s10877-016-9951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9951-4

Keywords

Navigation