Skip to main content
Log in

A single precursor route to synthesize CuO and CuS nanostructures based on copper ammine and thiourea complexes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hydrothermal synthesis is reported of copper(II) oxide and copper(II) sulfide nanostructures with different morphologies using ammine (NH3) and thiourea (tu) complexes of copper(I) and copper(II) as the starting materials in the absence of any capping agents/surfactants. Indeed, ammine and thiourea ligands act as the sources of hydroxide and sulfur ions in the preparation of CuO and CuS nanostructures, respectively, as well as central copper ion as the Cu source. This method has the advantages of the simplicity and low cost. The synthesized products were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy and scanning electron microscopy techniques. Further, the effects of precursor concentration, temperature and reaction time on the morphology and size of the nanostructures were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Mallinson, The Foundations of Magnetic Recording (Academic Press, Berkeley, 1987)

    Google Scholar 

  2. T. Mitsuyu, O. Yamakazi, K. Ohji, K. Wasa, Ferroelectrics 42, 233 (1982)

    Article  Google Scholar 

  3. O. Regan, M. Gratzel, A low-cost. Nature 353, 737 (1991)

    Article  Google Scholar 

  4. A.E. Rakhshni, Solid State Electron. 29, 7 (1986)

    Article  Google Scholar 

  5. C.T. Hsieh, J.M. Chen, H.H. Lin, H.C. Shih, Appl. Phys. Lett. 83, 3383 (2003)

    Article  Google Scholar 

  6. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)

    Article  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  Google Scholar 

  8. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  Google Scholar 

  9. Y. Wu, R. Fan, P. Yang, Nano Lett. 2, 83 (2002)

    Article  Google Scholar 

  10. R. Jin, Y.C. Cao, E. Hao, G.S. Metraux, G.C. Schatz, C.A. Mirkin, Nature 425, 487 (2003)

    Article  Google Scholar 

  11. M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  Google Scholar 

  12. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  Google Scholar 

  13. Y. Jun, J. Choi, J. Cheon, Angew. Chem. Int. Ed. 45, 3414 (2006)

    Article  Google Scholar 

  14. B.A. Korgel, D. Fitzmaurice, Adv. Mater. 10, 661 (1998)

    Article  Google Scholar 

  15. Y.L. Yu, J.Y. Zhang, Mater. Lett. 63, 1840 (2009)

    Article  Google Scholar 

  16. M. Zhang, X. Xu, M.L. Zhang, Mater. Lett. 62, 385 (2008)

    Article  Google Scholar 

  17. J. Liu, D.F. Xue, Adv. Mater. 20, 2622 (2008)

    Article  Google Scholar 

  18. A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21, 197 (2010)

    Article  Google Scholar 

  19. Y. Ren, Z. Ma, L. Qian, S. Dai, H. He, P.G. Bruce, Catal. Lett. 131, 146 (2009)

    Article  Google Scholar 

  20. U.K. Gautam, B. Mukkerjee, Bull. Mater. Sci. 29, 1 (2006)

    Article  Google Scholar 

  21. A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Chem. 1, 18 (2000)

    Google Scholar 

  22. A. Phruaungrat, T. Thongtem, S. Thongtem, Chalcogenide Lett. 8, 291 (2011)

    Google Scholar 

  23. K. Tezuka, W.C. Sheets, R. Kurihara, Y.J. Shan, H. Imoto, T.J. Mark, K.R. Poeppelmeier, Solid State Sci. 9, 95 (2007)

    Article  Google Scholar 

  24. W. Liang, M.H. Whangbo, Solid State Commun. 85, 405 (1993)

    Article  Google Scholar 

  25. M.H. Kunita, E.M. Girotto, Appl. Surf. Sci. 202, 223 (2002)

    Article  Google Scholar 

  26. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono, Appl. Phys. Lett. 82, 3032 (2003)

    Article  Google Scholar 

  27. S.Y. Kuchmii, A.V. Korzhak, A.E. Raevskaya, A.I. Kryukov, Theor. Exp. Chem. 37, 36 (2001)

    Article  Google Scholar 

  28. I.P. Parkin, Chem. Soc. Rev. 25, 199 (1996)

    Article  Google Scholar 

  29. K. Mageshwari, S.S. Mali, T. Hemalatha, R. Sathyamoorthy, P.S. Patil, Solid State Chem. 39, 108 (2011)

    Article  Google Scholar 

  30. A. Ghahremaninezhad, E. Asselin, D.G. Dixon, J. Phys. Chem. C 115, 9320 (2011)

    Article  Google Scholar 

  31. M.A. Freeda, C.K. Mahadevan, S. Ramalingom, Arch. Phys. Res. 2, 175 (2011)

    Google Scholar 

  32. X.L. Liu, Y.J. Zhu, Mater. Lett. 65, 1089 (2011)

    Article  Google Scholar 

  33. K.J. Wang, G.D. Li, J.X. Li, Q. Wang, J.S. Chen, Cryst. Growth Des. 7, 2265 (2007)

    Article  Google Scholar 

  34. P. Zhang, L. Gao, J. Mater. Chem. 13, 2007 (2003)

    Article  Google Scholar 

  35. T. Thongtem, A. Phuruangrat, S. Thongtem, J. Mater. Sci. 42, 9316 (2007)

    Article  Google Scholar 

  36. O. Glemser, H. Sauer, Handbook of Preparative Inorganic Chemistry, 2nd edn. (Academic Press, New York, 1963)

    Google Scholar 

  37. R.C. Bott, G.A. Bowmaker, C.A. Davis, G.A. Hope, B.E. Jones, Inorg. Chem. 37, 651 (1998)

    Article  Google Scholar 

  38. S. Parmar, Y. Kumar, A. Mittal, S. Afr, J. Chem. 63, 123 (2010)

    Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. (Wiley, New York, 1997)

    Google Scholar 

  40. Q.B. Wu, S. Ren, S.Z. Deng, J. Chen, N.S. Xu, J. Vac. Sci. Technol. B 22, 1282 (2004)

    Article  Google Scholar 

  41. K.A.M. Ahmed, Q. Zeng, K. Wu, K. Huang, J. Solid State Chem. 183, 744 (2010)

    Article  Google Scholar 

  42. M. Mansournia, F. Azizi, N. Rakhshan, J. Phys. Chem. Solids 80, 91 (2015)

    Article  Google Scholar 

  43. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 5839 (2015)

    Article  Google Scholar 

  44. M. Mansournia, A. Hajiebrahimi, J. Mater. Sci. Mater. Electron. 26, 7117 (2015)

    Article  Google Scholar 

  45. M. Mansournia, E. Moradinia, J. Mater. Sci. Mater. Electron. 27, 82 (2016)

    Article  Google Scholar 

  46. Q. Lu, F. Gao, D. Zhao, Nano Lett. 2, 725 (2002)

    Article  Google Scholar 

  47. X.H. Liao, N.Y. Chena, S. Xub, S.B. Yanga, J.J. Zhu, J. Cryst. Growth 252, 593 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University of Kashan for supporting this work by Grant No. 363030/3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Mansournia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansournia, M., Azizi, A. A single precursor route to synthesize CuO and CuS nanostructures based on copper ammine and thiourea complexes. J Mater Sci: Mater Electron 27, 7908–7919 (2016). https://doi.org/10.1007/s10854-016-4782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4782-0

Keywords

Navigation