Skip to main content
Log in

Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this work is to modify coconut shell powder (CSP) using various silane coupling agents and to study the effect of modification on the interfacial adhesion and mechanical properties of the fillers in the binary blend of thermoplastic polyurethane and natural rubber. Mechanical properties such as tensile strength, tear strength, hardness and abrasion resistance were evaluated. Results revealed that, compared to triethoxyvinylsilane modified CSP composites, glycidyloxypropyltrimethoxysilane treated CSP showed higher tensile strength and better interfacial adhesion with the matrix. The efficiency of the silane treatment is further characterized by the FT-IR analysis of fillers and the morphological study of both the CSP and the composites. FT-IR studies demonstrated that the silyl parts of both silane coupling agents efficiently grafted to the CSP. SEM images of treated CSPs provide ample evidence for the increased mechanical properties of the composites. The increased thermal stability of is evident from the thermo gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. De Carvalho AJF, Curvelo AAS, Agnelli JAM (2000) Wood pulp reinforced thermoplastic starch composites. Int J Polym Mater 51:647–660

    Article  Google Scholar 

  2. Luz S, Gonçalves A, Del’Arco A (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A 38:1455–1461

    Article  Google Scholar 

  3. Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:265–272

    Article  Google Scholar 

  4. Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  Google Scholar 

  5. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  Google Scholar 

  6. Rimdusit S, Damrongsakkul S, Wongmanit P, Saramas D, Tiptipakorn S (2011) Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends. J Reinf Plast Compos 30:1691–1702

    Article  Google Scholar 

  7. Bledzki AK, Faruk O (2003) Wood fibre reinforced polypropylene composites: effect of fibre geometry and coupling agent on physico-mechanical properties. Appl Compos Mater 10:365–379

    Article  Google Scholar 

  8. Wang J, Wu W, Wang W, Zhang J (2011) Effect of a coupling agent on the properties of hemp-hurd-powder-filled styrene–butadiene rubber. J Appl Polym Sci 121:681–689

    Article  Google Scholar 

  9. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  10. Herrera-Franco P, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A 35:339–345

    Article  Google Scholar 

  11. Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos B 104:111–117

    Article  Google Scholar 

  12. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819

    Article  Google Scholar 

  13. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  Google Scholar 

  14. Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272

    Article  Google Scholar 

  15. Mróz P, Białas S, Mucha M, Kaczmarek H (2013) Thermogravimetric and DSC testing of poly (lactic acid) nanocomposites. Thermochim Acta 573:186–192

    Article  Google Scholar 

  16. Cisneros-López E, Pérez-Fonseca A, Fuentes-Talavera F et al (2016) Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym Eng Sci 56:856–865

    Article  Google Scholar 

  17. Valadez-Gonzalez A, Cervantes-Uc J, Olayo R, Herrera-Franco P (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320

    Article  Google Scholar 

  18. Salmah H, Koay S, Hakimah O (2013) Surface modification of coconut shell powder filled polylactic acid biocomposites. J Thermoplast Compos Mater 26:809–819

    Article  Google Scholar 

  19. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos B 101:31–45

    Article  Google Scholar 

  20. Ramaraj B (2006) Modified poly (vinyl alcohol) and coconut shell powder composite films: physico-mechanical, thermal properties, and swelling studies. Polym Plast Technol Eng 45:1227–1231

    Article  Google Scholar 

  21. Monteiro S, Terrones L, D’almeida J (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595

    Article  Google Scholar 

  22. Macedo JdS, Costa MF, Tavares MI, Thire RM (2010) Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci 50:1466–1475

    Article  Google Scholar 

  23. Chun KS, Husseinsyah S, Osman H (2013) Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym Eng Sci 53:1109–1116

    Article  Google Scholar 

  24. Sareena C, Ramesan M, Purushothaman E (2012) Utilization of coconut shell powder as a novel filler in natural rubber. J Reinf Plast Compos 31:533–547

    Article  Google Scholar 

  25. Pradhan SK, Dwarakadasa E, Reucroft PJ (2004) Processing and characterization of coconut shell powder filled UHMWPE. Mater Sci Eng A 367:57–62

    Article  Google Scholar 

  26. Sarki J, Hassan S, Aigbodion V, Oghenevweta J (2011) Potential of using coconut shell particle fillers in eco-composite materials. J Alloys Compd 509:2381–2385

    Article  Google Scholar 

  27. Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    Article  Google Scholar 

  28. Al Minnath M, Unnikrishnan G, Purushothaman E (2011) Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J Membr Sci 379:361–369

    Article  Google Scholar 

  29. Zimmermann MVG, de Macedo V, Zattera AJ, Santana RMC (2016) Influence of chemical treatments on cellulose fibers for use as reinforcements in poly(ethylene-co-vinyl acetate) composites. Polym Compos 37:1991–2000

    Article  Google Scholar 

  30. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  31. Ismail H, Shuhelmy S, Edyham M (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47

    Article  Google Scholar 

  32. Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    Google Scholar 

  33. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627

    Article  Google Scholar 

  34. Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19:9847. doi:10.1007/s10965-012-9847-z

    Article  Google Scholar 

  35. Gierlinger N, Goswami L, Schmidt M et al (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromol 9:2194–2201

    Article  Google Scholar 

  36. Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  Google Scholar 

  37. Tsao C-H, Hsiao Y-H, Hsu C-H, Kuo P-L (2016) Stable lithium deposition generated from ceramic-cross-linked gel polymer electrolytes for lithium anode. ACS Appl Mater Interfaces 8:15216–15224

    Article  Google Scholar 

  38. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639

    Article  Google Scholar 

  39. Lin Y, Liu S, Peng J, Liu L (2016) The filler–rubber interface and reinforcement in styrene butadiene rubber composites with graphene/silica hybrids: a quantitative correlation with the constrained region. Compos A 86:19–30

    Article  Google Scholar 

  40. Subair N, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812

    Article  Google Scholar 

  41. Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  Google Scholar 

  42. Zhao H-M, Du H, Lin J et al (2016) Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ 562:170–178

    Article  Google Scholar 

  43. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  Google Scholar 

  44. Ishak MR, Leman Z, Salit MS, Rahman MZA, Uyup MKA, Akhtar R (2013) IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111:1375–1383

    Article  Google Scholar 

  45. Sajna V, Mohanty S, Nayak SK (2016) Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay. Int J Plast Technol 20:187–201

    Article  Google Scholar 

  46. Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos B 67:227–232

    Article  Google Scholar 

  47. Panaitescu DM, Nicolae CA, Vuluga Z et al (2016) Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem 37:137–146

    Article  Google Scholar 

  48. George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173

    Article  Google Scholar 

  49. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965

    Article  Google Scholar 

  50. Ansarifar M, Chugh JP, Haghighat S (2000) Reinforcing effects of precipitated silicas on properties of some vulcanizates of styrene-butadiene rubber. Iran Polym J 9:153–162

    Google Scholar 

  51. Mathew L, Narayanankutty SK (2008) Cure characteristics and mechanical properties of HRH bonded nylon-6 short fiber-nanosilica-acrylonitrile butadiene rubber hybrid composite. Polym Plast Technol Eng 48:75–81

    Article  Google Scholar 

  52. Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433

    Article  Google Scholar 

  53. Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J Polym Res 19:9859. doi:10.1007/s10965-012-9859-8

    Article  Google Scholar 

  54. Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A 43:1357–1364

    Article  Google Scholar 

  55. Mat NSC, Ismail H, Othman N (2016) Curing characteristics and tear properties of bentonite filled ethylene propylene diene (epdm) rubber composites. Procedia Chem 19:394–400

    Article  Google Scholar 

  56. Manoj KC, Kumari P, Rajesh C, Unnikrishnan G (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17:1. doi:10.1007/s10965-009-9283-x

    Article  Google Scholar 

  57. Lin Y, Zeng Z, Zhu J, Chen S, Yuan X, Liu L (2015) Graphene nanosheets decorated with ZnO nanoparticles: facile synthesis and promising application for enhancing the mechanical and gas barrier properties of rubber nanocomposites. RSC Adv 5:57771–57780

    Article  Google Scholar 

  58. Ruggerone R, Geiser V, Dalle Vacche S, Leterrier Y, Manson J-AE (2010) Immobilized polymer fraction in hyperbranched polymer/silica nanocomposite suspensions. Macromolecules 43:10490–10497

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (AKB) gratefully acknowledges the Council of Science and Industrial Research (CSIR) for the research fellowship. The authors deeply thank Dr. C Rajesh and Divia MES KVM College, Kerala for the mechanical testing results, Dr. M.K. Sarath Josh, IISER Kolkata for the SEM images and K.V. Mahesh for providing TGA data. Funding was provided by Council of Scientific and Industrial Research (Grant No. 09/043(0155)/2012-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushothaman Etathil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, A.K., Mottakkunnu Parambil, S., Vakyath, S. et al. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. J Mater Sci 52, 6712–6725 (2017). https://doi.org/10.1007/s10853-017-0907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0907-y

Keywords

Navigation