Skip to main content
Log in

Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay

  • Conference Report
  • Published:
International Journal of Plastics Technology

Abstract

This research work aims to study the effect of banana fiber and C30B nanoclay on the mechanical, thermal and morphological properties of the biocomposite of polylactic acid (PLA). The banana fibers were subjected to mercerization and silane treatment prior to better interface bonded composite fabrication. The morphology, mechanical properties and thermal stability of the silane treated banana fiber (SiB) was improved over those of untreated fibers (UTB). Silane treated banana fiber and nanoclay reinforced PLA bionanocomposite with tuneable properties was successfully prepared by melt blending followed by injection moulding. The mechanical and thermal properties have been studied to observe the effect of the nanoclay on PLA/banana fiber biocomposites. The bionanocomposite with 3 wt.% of nanoclay possessed the highest mechanical and thermal properties. Additionally the composites were subjected to the scanning electron micrograph (SEM) and transmission electron microscopy (TEM) to demonstrate the interfacial bonding between filler and matrix. As evident from the result of SEM and TEM for biocomposites, the interfacial adhesion between fibers and matrix significantly increased with the addition of SiB and C30B nanoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Madhavan Nampoothiri K (2010) Nimisha Rajendran Nair, Rojan Pappy John, An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  2. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  3. Tao Y, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505

    Article  Google Scholar 

  4. Wang Y, Weng Y, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Test 36:119–125

    Article  Google Scholar 

  5. Jandas PJ, Mohanty S, Nayak SK, Srivastava H (2011) Effect of surface treatments of banana fiber on mechanical, thermal and biodegradability properties of PLA/banana fiber biocomposites, polymer composites, 1989–1700

  6. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau K-T (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres:Evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84

    Article  CAS  Google Scholar 

  7. Duc F, Bourban PE, Plummer CJG, Manson JAE (2014) Damping of thermoset and thermoplastic flax fibre composites. Compos Part A 64:115–123

    Article  CAS  Google Scholar 

  8. Shukor F, Hassan A, Islam S, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429

    Article  CAS  Google Scholar 

  9. Faris M, AL-Oqla SM (2014) Sapuan, Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    Article  Google Scholar 

  10. Oza S, Ning H, Ferguson I, Na L (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Compos Part B 67:227–232

    Article  CAS  Google Scholar 

  11. Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection- molded jute-fiber-reinforced polylactide green-composites. Compos Part B 68:200–206

    Article  CAS  Google Scholar 

  12. Li Z, Zhou X, Pei C (2011) Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. International Journal of Polymer Science

  13. Kabir MM, Wang H, Lau KT et al (2012) Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview. Compos Part B 43:2883–2892

    Article  CAS  Google Scholar 

  14. Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A 41:806–819

    Article  Google Scholar 

  15. Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, de Villiers MFR, Ray SS (2014) Effect of nanoclay on optical properties of PLA/clay composite films. Polym Test 36:24–31

    Article  CAS  Google Scholar 

  16. Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 54:2382–2391

    Article  CAS  Google Scholar 

  17. Seligra PG, Nuevo F, Lamanna M, Fama L (2013) Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos Part B 46:61–68

    Article  CAS  Google Scholar 

  18. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers, Thermochimica Acta 523:1–24

    CAS  Google Scholar 

  19. Sharma SK, Nayak SK (2009) Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties. Polym Degrad Stab 94:132–138

    Article  CAS  Google Scholar 

  20. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  21. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66:538–547

    Article  CAS  Google Scholar 

  22. Zhong Y, Poloso T, Hetzer M et al (2007) Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polym Eng Sci 47:797–803

    Article  CAS  Google Scholar 

  23. Mroz P, Białas S, Mucha M et al (2013) Thermogravimetric and DSC testing of poly(lactic acid)nanocomposites. Thermochim Acta 573:186–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilizers, Government of India through GREET project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V P, S., Mohanty, S. & Nayak, S.K. Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay. Int J Plast Technol 20, 187–201 (2016). https://doi.org/10.1007/s12588-014-9088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-014-9088-6

Keywords

Navigation