Skip to main content
Log in

IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of resin impregnation on the interfacial shear strength (IFSS), thermogravimetric (TG) and fourier transform infrared (FT-IR) of sugar palm (Arenga pinnata) fibres. In addition, the effect of resin impregnation on the mechanical properties of sugar palm fibre reinforced unsaturated polyester (UP) composites was also studied. The fibres were impregnated with UP via vacuum resin impregnation process at a pressure of 600 mmHg for 5 min. Composites of 10, 20, 30, 40 and 50 % fibre loadings were fabricated and tested for tensile and flexural properties. It was observed that the impregnation process caused the fibres to be enclosed by UP resin and this gave a strong influence to the increase of its interfacial bonding by the increase of its IFSS from single fibre pull-out test. It was also observed with TG and FT-IR spectra that the impregnated fibre had lower moisture uptake than the control and there was no significant increase in thermal stability of the impregnated fibre. The sequence of fibre decomposition started from the evaporation of moisture, hemicelluloses, cellulose, lignin and finally ash content and the presence of these components were proven by FT-IR spectra. For the composite specimens, due to the high interfacial bonding of the impregnated fibre and the matrix, the impregnated composites showed consistently higher tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus and toughness than the control samples. It was also observed that 30 % fibre loading gave optimum properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ. 2002;10:19–26.

    Article  CAS  Google Scholar 

  2. Bachtiar D, Sapuan SM, Hamdan MM. The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des. 2008;29:1285–90.

    Article  Google Scholar 

  3. Mäder E, Freitagc K-H. Interface properties and their influence on short fibre composites. Composites. 1990;21:397–402.

    Article  Google Scholar 

  4. Aji IS, Zainudin ES, Khalina A, Sapuan SM, Khairul MD. Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim. 2012; doi:10.1007/s10973-011-1807-z.

  5. El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES. Effect of alkali treatment on mechanical and thermal properties of kenaf fibre reinforced thermoplastic polyurethane composite. J Therm Anal Calorim. 2012; doi:10.1007/s10973-012-2258-x.

  6. Wirawan R, Sapuan SM, Yunus R, Khalina A. Elastic and viscoelastic properties of sugarcane bagasse filled poly(vinyl chloride) composites. J Therm Anal Calorim. 2011;103:1047–53.

    Article  CAS  Google Scholar 

  7. Mogea JP. Revisi Marga Arenga (Palmae). PhD Thesis, Universitas Indonesia. 1991.

  8. Ismail J. Kajian Percambahan dan Kultur In Vitro Enau (Arenga pinnata), MS Thesis, Universiti Putra Malaysia. 1994.

  9. Siregar JP. Tensile and flexural properties of Arenga Pinnata Filament (Ijuk Filament) reinforced epoxy composites, MS Thesis, Universiti Putra Malaysia. 2005.

  10. Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK. Characterization of sugar palm (Arenga pinnata) fibres: tensile and thermal properties. J Therm Anal Calorim. 2012; doi:10.1007/s10973-011-1785-1.

  11. Valadez-Gonzalez A, Cervantes_Uc JM, Olayo R, Herrera-Franco PJ. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B 1999;30:309–320.

    Google Scholar 

  12. Sydenstricker THD, Mochnaz S, Amico SC. Pull-out and other evaluations on sisal-reinforced polyester biocomposites. Polym Test. 2003;22:375–80.

    Article  CAS  Google Scholar 

  13. Park J-M, Son TQ, Jung J-G, Hwang B-S. Interfacial evaluation of single ramie and kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Compos Interfaces. 2006;13:105–29.

    Article  CAS  Google Scholar 

  14. Pothan LA, Sabu T, Neelakantan NR. Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics. J Reinf Plast Compos. 1997;16:744–65.

    CAS  Google Scholar 

  15. Devi LU, Bhagawan SS, Thomas S. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci. 1997;64:1739–40.

    Article  CAS  Google Scholar 

  16. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicelluloses, cellulose and lignin pyrolisis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  17. Zohdy MH. Cationization and gamma irradiation effects on the dyeability of polyester fabric towards disperse dyes. Radiat Phys Chem. 2005;73:101–10.

    Article  CAS  Google Scholar 

  18. Glasser WG, Kelley SS. Lignin. In: Kroschwitz JI, editor. Encyclopedia of polymer science and engineering. New York: John Wiley & Sons Inc.; 1987.

    Google Scholar 

  19. Himmelsbach DS, Khalili S, Akin DE. The use of FT-IR micro-spectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stem. J Sci Food Agric. 2002;82:685–96.

    Article  CAS  Google Scholar 

  20. Nada A, Shabaka A, Yousef A, Nour A. Infrared spectroscopic and dielectric studies of swollen cellulose. J Appl Polym Sci. 1990;40:731–9.

    Article  CAS  Google Scholar 

  21. Abbott T, Palmer D, Gordon S, Bagby M. Solid state of plant polymers by FTIR. J Wood Chem Technol. 1988;8:1–28.

    Article  CAS  Google Scholar 

  22. Pavia DL, Lampman GM, Kriz GS. Introduction to spectroscopy. 3rd ed. Belmont: Brooks Cole; 2008.

    Google Scholar 

  23. Khalil HPS, Siti Alwani M, Ridzuan R, Kamarudin H, Khairul A. Chemical composition, morphological characteristics and cell wall structure of Malaysian oil palm fibres. Polym-Plast Technol Eng. 2008;47:273–80.

    Article  Google Scholar 

  24. Sakina H, Sarani Z, Khairul Zaman D. Chemical characterization of benzylated oil palm empty fruit bunches. Symposium on utilization of oil palm tree. oil palm biomass: opportunities and challenges in commercial exploitation, Kuala Lumpur. 2000.

  25. Sahari J, Sapuan SM, Ismarrubie ZN, Zaki MZA. Physio-chemical properties of different parts of sugar palm fibre. Fibers Text Eastern Eur 2012;20:23–26.

    Google Scholar 

  26. Ibrahim NA, Hadithon KA, Abdan K. Effect of fiber treatment on mechanical properties of kenaf fiber–ecoflex composites. J Reinf Plast Compos. 2010;29:2192–8.

    Article  CAS  Google Scholar 

  27. Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralize phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol. 2004;37:349–61.

    Article  CAS  Google Scholar 

  28. Zuhri MYM, Sapuan SM, Ismail N, Wirawan R. Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malays. 2009;39:87–92.

    Google Scholar 

  29. Ramli R, Yunus RM, Beg MDH. Effects of fiber loading, fiber type, its mesh sizes, and coupling agent on the properties of oil palm biomass/polypropylene composites. J Compos Mater. 2011;0:1–7.

    Google Scholar 

  30. Shams MI, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: effects of pressing pressure and pressure holding. Wood Sci. 2004;50:337–42.

    CAS  Google Scholar 

  31. Anwar UMK, Paridah MT, Hamdan H, Sapuan SM, Bakar ES. Effect of curing time on physical and mechanical properties of phenolic-treated bamboo strips. Indust Crops Prod. 2009;29:214–9.

    Article  CAS  Google Scholar 

  32. Deka M, Saikia CN. Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Biores Technol. 2000;73:179–81.

    Article  CAS  Google Scholar 

  33. Shams MI, Kagemori N, Yano H. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin IV: species dependency. J Wood Sci. 2006;52:179–83.

    Article  CAS  Google Scholar 

  34. Ishak MR, Leman Z, Sapuan SM, Rahman MZA, Anwar UMK. Effects of impregnation pressure on physical and tensile properties of impregnated sugar palm (Arenga pinnata) fibres. Key Eng Mater. 2011;471–472:1153–8.

    Article  Google Scholar 

  35. Ishak MR, Leman Z, Sapuan SM, Rahman MZA, Anwar UMK. Effects of impregnation time on physical and tensile properties of impregnated sugar palm (Arenga pinnata) fibres. Key Eng Mater. 2011;471–472:1147–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Agriculture and Agro-Based Industry (MOA) of Malaysia for funding the research grant (Science Fund, project number: 05-01-04-SF1114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ridzwan Ishak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishak, M.R., Leman, Z., Salit, M.S. et al. IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111, 1375–1383 (2013). https://doi.org/10.1007/s10973-012-2457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2457-5

Keywords

Navigation