Skip to main content
Log in

Toughness and rheological characteristics of poly(lactic acid)/acrylic core–shell rubber blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper reports effects of acrylic core–shell rubber (CSR) on mechanical and rheological properties of poly(lactic acid) (PLA)/CSR blends. The CSR was synthesized via a seeded emulsion polymerization with poly(butyl acrylate) and poly(methyl methacrylate) as core and shell, respectively, and then introduced to PLA using a twin-screw extruder. Toughness of the blends characterized was increased by shear yielding due to micro-voiding formed by de-bonding of CSR. Their shear viscosity, storage, and loss modulus measured using rotational rheometer increased with CSR content. An analysis using Cox–Merz law confirmed that two curves coincided well with each other, while exhibiting shear-thinning behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  2. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  3. Liu H, Zhang J (2011) Research progress in toughening modification of poly (lactic acid). J Polym Sci Polym Phys 49:1051–1083

    Article  CAS  Google Scholar 

  4. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly (lactic acid) blends. Macromol Res 18:583–588

    Article  CAS  Google Scholar 

  5. Narimissa E, Gupta RK, Choi HJ, Kao N, Jollands M (2012) Morphological, mechanical, and thermal characterization of biopolymer composites based on polylactide and nanographite platelets. Polym Compos 33:1505–1515

    Article  CAS  Google Scholar 

  6. Narimissa E, Gupta RK, Kao N, Choi HJ, Jollands M, Bhattacharya SN (2014) Melt rheological investigation of polylactide–nanographite platelets biopolymer composites. Polym Eng Sci 54:175–188

    Article  CAS  Google Scholar 

  7. Narimissa E, Gupta RK, Kao N, Choi HJ, Bhattacharya SN (2015) The comparison between the effects of solvent casting and melt intercalation mixing processes on different characteristics of polylactide–nanographite platelets composites. Polym Eng Sci 55:1560–1570

    Article  CAS  Google Scholar 

  8. Lee H, Chin I-J (2016) Toughening effect of annealing-induced intermolecular crystallization of PBA-g-PLLA in PLA matrix. Macromol Res 24:515–521

    Article  CAS  Google Scholar 

  9. Yao S-S, Pang Q-Q, Song R, Jin F-L, Park S-J (2016) Fracture toughness improvement of poly (lactic acid) with silicon carbide whiskers. Macromol Res 24:961–964

    Article  CAS  Google Scholar 

  10. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816

    Article  CAS  PubMed  Google Scholar 

  11. Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromol 15:4260–4271

    Article  CAS  Google Scholar 

  12. Yuan D, Chen Z, Xu C, Chen K, Chen Y (2015) Fully biobased shape memory material based on novel cocontinuous structure in poly (lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain Chem Eng 3:2856–2865

    Article  CAS  Google Scholar 

  13. Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Wang W, Yuan D, Xu C, Cao L, Liang X (2018) Bio-Based PLA/NR-PMMA/NR ternary thermoplastic vulcanizates with balanced stiffness and toughness:“Soft–Hard” core–shell continuous rubber phase, in situ compatibilization, and properties. ACS Sustain Chem Eng 6:6488–6496

    Article  CAS  Google Scholar 

  15. Zhao T-H, Yuan W-Q, Li Y-D, Weng Y-X, Zeng J-B (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51:2027–2037

    Article  CAS  Google Scholar 

  16. Mehrabi Mazidi M, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide- (PLA-) based ternary blends with significantly enhanced glass transition and melt strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314

    Article  CAS  Google Scholar 

  17. Gramlich WM, Robertson ML, Hillmyer MA (2010) Reactive compatibilization of poly (l-lactide) and conjugated soybean oil. Macromolecules 43:2313–2321

    Article  CAS  Google Scholar 

  18. Liu H, Song W, Chen F, Guo L, Zhang J (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44:1513–1522

    Article  CAS  Google Scholar 

  19. Bai H, Huang HC, Xiu H, Gao Y, Zhang Q, Fu Q (2012) Toughening of poly (l-lactide) with poly (ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266

    Article  CAS  Google Scholar 

  20. Lee JY, Chin I-J, Choi HJ (2018) Effect of particle size and crosslinking on the toughening of core-shell-type rubber-modified poly(lactic acid) composites. Polym Test 65:440–449

    Article  CAS  Google Scholar 

  21. Lu M, Keskkula H, Paul D (1996) Toughening of nylon 6 with core-shell impact modifiers: effect of matrix molecular weight. J Appl Polym Sci 59:1467–1477

    Article  CAS  Google Scholar 

  22. Kayano Y, Keskkula H, Paul D (1996) Effect of polycarbonate molecular weight and processing conditions on mechanical behaviour of blends with a core-shell impact modifier. Polymer 37:4505–4518

    Article  CAS  Google Scholar 

  23. Bucknall C (2001) Blends containing core-shell impact modifiers part 1. Structure and tensile deformation mechanisms (IUPAC technical report). Pure Appl Chem 73:897–912

    Article  CAS  Google Scholar 

  24. Wu G, Zhao J, Shi H, Zhang H (2004) The influence of core–shell structured modifiers on the toughness of poly (vinyl chloride). Eur Polym J 40:2451–2456

    Article  CAS  Google Scholar 

  25. Cho K, Yang J, Park CE (1998) The effect of rubber particle size on toughening behaviour of rubber-modified poly (methyl methacrylate) with different test methods. Polymer 39:3073–3081

    Article  CAS  Google Scholar 

  26. Choi HJ, Ray SS (2011) A review on melt-state viscoelastic properties of polymer nanocomposites. J Nanosci Nanotech 11:8421–8449

    Article  CAS  Google Scholar 

  27. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207

    Article  CAS  Google Scholar 

  28. Afrifah KA, Matuana LM (2010) Impact modification of polylactide with a biodegradable ethylene/acrylate copolymer. Macromol Mater Eng 295:802–811

    Article  CAS  Google Scholar 

  29. Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M (1995) Cavitation versus debonding during deformation of rubber-modified poly (vinyl chloride). Polymer 36:437–441

    Article  CAS  Google Scholar 

  30. Carreau PJ (1997) Rheology of polymeric systems: principles and applications. Hanser Publishers, New York

    Google Scholar 

  31. Dou R, Wang W, Zhou Y, Li L-P, Gong L, Yin B, Yang M-B (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129:253–262

    Article  CAS  Google Scholar 

  32. Karis TE, Kono R-N, Kim CA, Jhon MS, Choi HJ (2003) Nonlinear rheology for a grease. J Ind Eng Chem 9:419–425

    CAS  Google Scholar 

  33. Kim TH, Lim ST, Lee CH, Choi HJ, Jhon MS (2003) Preparation and rheological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite. J Appl Polym Sci 87:2106–2112

    Article  CAS  Google Scholar 

  34. Cox W, Merz E (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  35. Choi H, Park S, Yoon J, Lee HS, Choi S (1995) Rheological study on poly-D (-)(3-hydroxybutyrate) and its blends with poly (ethylene oxide). Polym Eng Sci 35:1636–1642

    Article  CAS  Google Scholar 

  36. Sohn J-I, Lee C, Lim S, Kim T, Choi H, Jhon M (2003) Viscoelasticity and relaxation characteristics of polystyrene/clay nanocomposite. J Mater Sci 38:1849–1852

    Article  CAS  Google Scholar 

  37. Cui L, Zhou Z, Zhang Y, Zhang Y, Zhang X, Zhou W (2007) Rheological behavior of polypropylene/novolac blends. J Appl Polym Sci 106:811–816

    Article  CAS  Google Scholar 

  38. Jang W-Y, Hong K-H, Cho B-H, Jang S-H, Lee S-I, Kim B-S, Shin B-Y (2008) Thermal and rheological properties, and biodegradability of chemically modified PLA by reactive extrusion. Polym Korea 32:116–124

    CAS  Google Scholar 

  39. Li J, Ma G, Sheng J (2010) Linear viscoelastic characteristics of in situ compatiblized binary polymer blends with viscoelastic properties of components variable. J Polym Sci Polym Phys 48:1349–1362

    Article  CAS  Google Scholar 

  40. Jang K, Lee JW, Hong I-K, Lee S (2013) Effect of supercritical carbon dioxide as an exfoliation aid on bio-based polyethylene terephthalate glycol-modified/clay nanocomposites. Korea-Aust Rheol J 25:145–152

    Article  Google Scholar 

  41. Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  42. Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly (methyl methacrylate) and poly (styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466

    Article  CAS  Google Scholar 

  43. You Y-C, Kim Y-C (2011) Study on the talc dispersion and rheological properties of PP/talc compound. J Korea Acad-Ind Soc 12:4261–4266

    Google Scholar 

  44. Kim YH, Kwon SH, Choi HJ, Choi K, Kao N, Bhattacharya SN, Gupta RK (2016) Thermal, mechanical, and rheological characterization of polylactic acid/halloysite nanotube nanocomposites. J Macromol Sci B 55:680–692

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Jin Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Kwon, S.H., Chin, IJ. et al. Toughness and rheological characteristics of poly(lactic acid)/acrylic core–shell rubber blends. Polym. Bull. 76, 5483–5497 (2019). https://doi.org/10.1007/s00289-018-2662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2662-x

Keywords

Navigation