Skip to main content
Log in

Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hot deformation characteristics of 2205 duplex stainless steel were analyzed by performing hot compression tests at a temperature range of 950–1200 °C and a strain rate of 0.001–1 s−1. Flow stress was modeled by the constitutive equation of hyperbolic sine function. The constants of n, A, α, and the apparent activation energy were determined at different strains. They were then fitted by polynomial equations. Using the hyperbolic sine function and the relations derived between constants and strain flow curves were successfully modeled. Microstructural evolutions were characterized using optical microscopy and electron back scattered diffraction techniques. The results showed that dynamic recovery in ferrite is accelerated at higher temperatures followed by transformation to continuous dynamic recrystallization. Dynamic recrystallization in austenite was postponed by the accommodation of strain in ferrite and very few internal boundaries in austenite. At high strain rates, dynamic recovery in ferrite and dynamic recrystallization in austenite are very slow. Consequently, the total recrystallized fraction decreases. At low temperatures this situation may cause flow instabilities. At low strain rates, softening processes dominate in austenite and ferrite whereas at intermediate strain rates, the formation of substructures is observed in both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gurrappa I, Krishna Reddy CV (2007) J Mater Proc Tech 182:195

    Article  CAS  Google Scholar 

  2. Itman Filho A, Rollo JMDA, Silva RV, Martinez G (2005) Mater Lett 59:1192

    Article  CAS  Google Scholar 

  3. Keshmiri H, Momeni A, Dehghani K, Ebrahimi GR, Heidari G (2009) J Mater Sci Technol 25:597

    CAS  Google Scholar 

  4. Fang YL, Liu ZY, Song HM, Jiang LZ (2009) Mater Sci Eng A 526:128

    Article  Google Scholar 

  5. Duprez L, De Cooman BC, Akdut N (2002) Met Mater Trans 33A:1931

    Article  CAS  Google Scholar 

  6. Mao P, Yang K, Su G (2003) J Mater Sci Technol 19:379

    CAS  Google Scholar 

  7. McQueen HJ, Ryan ND, Evangelista E, Xia X (1993) In: Proceedings 34th mechanical working and steel processing, 1993, Iron and Steel Inst. AIME, Warrendale: 101.

  8. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2007) Mater Sci Technol 23:1478

    Article  CAS  Google Scholar 

  9. Evangelista E, Mengucci P, Bowles J, McQueen HJ (1993) High Temp Mat Proc 12:57

    Article  CAS  Google Scholar 

  10. Momeni A, Dehghani K, Keshmiri HH, Ebrahimi GR (2010) Mater Sci Eng A527:1605

    CAS  Google Scholar 

  11. Momeni A, Dehghani K, Ebrahimi GR, Keshmiri H (2010) Met Mater Trans 41A:2898

    Article  CAS  Google Scholar 

  12. Mandal S, Bhaduri AK, Subramania Sarma V (2011) Met Mater Trans 42A:1062

    Article  Google Scholar 

  13. Momeni A, Dehghani K (2010) Mater Sci Eng A 527:5467

    Article  Google Scholar 

  14. Balancin O, Hoffmann WAM, Jonas JJ (2000) Metal Mater Trans 31A:1353

    Article  CAS  Google Scholar 

  15. Farnoush H, Momeni A, Dehghani K, Aghazadeh Mohandesi J, Keshmiri H (2010) Mater Des 31:220

    Article  CAS  Google Scholar 

  16. Maki T, Furuhara T, Tsuzaki K (2001) ISIJ Int 41:571

    Article  CAS  Google Scholar 

  17. Cizek P, Wynne BP, Rainforth WM (2006) J Phys 26:331

    Google Scholar 

  18. Solomon HD, Devine Jr TM (1982) In: Lula RA (ed) Duplex stainless steels ASM, Metals Park

  19. Nilsson JO (1992) Mater Sci Technol 8:685

    CAS  Google Scholar 

  20. Johansson J, Oden M (2000) Metall Mater Trans 31A:1557

    Article  CAS  Google Scholar 

  21. Estrin Y, Mecking H (1984) Acta Metall 32:57

    Article  Google Scholar 

  22. Momeni A, Dehghani K (2010) Met Mater Int 16:843

    Article  CAS  Google Scholar 

  23. Momeni A, Dehghani K (2011) Mater Sci Eng A528:1448

    CAS  Google Scholar 

  24. Sellars CM, Mc G, Tegart WJ (1972) Int Metall Rev 17:1

    CAS  Google Scholar 

  25. Mirzadeh H, Najafizadeh A (2010) Mater Sci Eng A527:1160

    CAS  Google Scholar 

  26. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon, Netherland

    Google Scholar 

  27. Evangelista E, McQueen HJ, Niewczas M, Cabibbo M (2004) Can Metall Quart 43:339

    CAS  Google Scholar 

  28. He CS, Zhang YD, Wang YN, Zhao X, Zuo L, Esling C (2003) Scripta Mater 48:737

    Article  CAS  Google Scholar 

  29. Wang G, Wu SD, Zuo L, Esling C, Wang ZG, Li GY (2003) Mater Sci Eng A346:83

    Article  CAS  Google Scholar 

  30. Zhang Y, Gey N, He C, Zhao X, Zuo L, Esling C (2004) Acta Mater 52:3467

    Article  CAS  Google Scholar 

  31. Dehghan Manshadi A, Hodgson PD (2008) J Mater Sci 43:6272. doi:10.1007/s10853-008-2907-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dehghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momeni, A., Dehghani, K. & Zhang, X.X. Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition. J Mater Sci 47, 2966–2974 (2012). https://doi.org/10.1007/s10853-011-6130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6130-3

Keywords

Navigation