Skip to main content

Advertisement

Log in

Load sharing between austenite and ferrite in a duplex stainless steel during cyclic loading

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The load sharing between phases and the evolution of micro- and macrostresses during cyclic loading has been investigated in a 1.5-mm cold-rolled sheet of the duplex stainless steel SAF 2304. X-ray diffraction (XRD) stress analysis and transmission electron microscopy (TEM) show that even if the hardness and yield strength are higher in the austenitic phase, more plastic deformation will occur in this phase due to the residual microstresses present in the material. The origin of the microstresses is the difference in coefficients of thermal expansion between the two phases, which leads to tensile microstresses in the austenite and compressive microstresses in the ferrite. The microstresses were also found to increase from 50 to 140 MPa in the austenite during the first 100 cycles when cycled in tension fatigue with a maximum load of 500 MPa. The cyclic loading response of the material was, thus, mainly controlled by the plastic properties of the austenitic phase. It was also found that initial compressive macrostresses on the surface increased from −40 to 50 MPa during the first 103 cycles. After the initial increase of microstresses and macrostresses, no fading of residual stresses was found to occur for the following cycles. A good correlation was found between the internal stress state and the microstructure evolution. The change in texture during cyclic fatigue showed a sharpening of the deformation texture in the ferritic phase, while no significant changes were found in the austenitic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Magnin and J.M. Lardon: Mater. Sci. Eng. A, 1988, vol. A104, pp. 21–28.

    Article  CAS  Google Scholar 

  2. T. Magnin, J. Lardon, and L. Coudreuse: Low-Cycle Fatigue, ASTM STP 942, ASTM, Philadelphia, PA, 1988, pp. 812–23.

    Google Scholar 

  3. F. Perdriset, T. Magnin, T. Cassange, P. Hoch, and F. Dupoiron: in Duplex Stainless Steels ’94, T. Gooch, ed., TWI, Cambridge, United Kingdom, 1994, vol. 3.

    Google Scholar 

  4. J. Vogt, A. Messai, and J. Foct: in Duplex Stainless Steels ’94, T. Gooch, ed., TWI, Cambridge, United Kingdom, 1994, vol. 1.

    Google Scholar 

  5. S. Degallaix, A. Seddouki, G. Degallaix, and J.-O. Nilsson: in Fatigue ’93, J.-P. Bailon and J.I. Dickson, eds., Engineering Materials Advisory Services Ltd., Warley, United Kingdom, 1993, vol. 1, pp. 91–96.

    Google Scholar 

  6. J. Polak, S. Degallaix, and G. Degallaix: Euromat 93: The 3rd Eur. Conf. on Advanced Materials and Processes, R. Pichoir and P. Costa, eds., Les Éditions de Physique, Les Ulis Cedex A, France, 1993, vol. 1, pp. 679–84.

    Google Scholar 

  7. S. Harjo, Y. Tomota, and M. Ono: Acta Mater., 1999, vol. 47, pp. 353–62.

    Article  CAS  Google Scholar 

  8. K. Kamachi, T. Okada, M. Kawano, S. Namba, T. Ishida, N. Tani, and T. Kubohori: in Progress in Science and Engineering of Composite, ICCM-IV, T. Hayashi, K. Kawata, and S. Umekawa, eds., JSCM, Tokyo, 1982, pp. 1383–89.

    Google Scholar 

  9. J. Johansson, M. Odén, and X.-H. Zeng: Acta Mater., 1999, vol. 47, pp. 2669–84.

    Article  CAS  Google Scholar 

  10. T. Siegmund, F. Fischer, and E. Werner: Mater. Sci. Eng., 1993, vol. A169, pp. 125–34.

    CAS  Google Scholar 

  11. I.C. Noyan and J.B. Cohen: Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987.

    Google Scholar 

  12. J.D. Almer, J.B. Cohen, and R.A. Winholtz: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2127–36.

    Article  CAS  Google Scholar 

  13. J.D. Almer, J.B. Cohen, and B. Moran: Mater. Sci. Eng., 2000, vol. 284, pp. 268–79.

    Article  Google Scholar 

  14. R. Winholtz and J. Cohen: Mater. Sci. Eng., 1992, vol. A154, pp. 155–63.

    CAS  Google Scholar 

  15. R. Winholtz and J. Cohen: Metall. Trans. A, 1992, vol. 23A, pp. 341–54.

    CAS  Google Scholar 

  16. I.C. Noyan: Metall. Trans. A, 1983, vol. 14A, pp. 1907–14.

    CAS  Google Scholar 

  17. R.A. Winholtz and J.B. Cohen: Aust. J. Phys., 1988, vol. 41, pp. 189–99.

    Google Scholar 

  18. J.L. Lebrun and K. Inal: in Advances in X-ray Analysis, Vol 40, J.V. Gilfrich, T.C. Huang, C.R. Hubbard, I.C. Noyan, P.K. Predecki, D.K. Smith, and R.L. Snyder, International Centre for Diffraction Data, Newtown Square, PA, 1996, CD-rom.

    Google Scholar 

  19. K. Inal and J.L. Lebrun: in ICRS-5, T. Ericsson, M. Odén, and A. Andersson, eds., Linköping University, Linköping, 1997, vol. n1, pp. 472–77.

    Google Scholar 

  20. M. Barral, J. Lebrun, J. Sprauel, and G. Maeder: Metall. Trans. A, 1987, vol. 18A, pp. 1229–38.

    CAS  Google Scholar 

  21. H.J. Bunge: Int. Mater. Rev., 1987, vol. 32, pp. 265–91.

    CAS  Google Scholar 

  22. H.J. Bunge, A. Ul-Haq, and H. Weiland: in INFACON 6, SAIMM, Johannesburg, 1992, vol. 2, pp. 197–201.

    Google Scholar 

  23. W. Hutchinson, K. Ushioda, and G. Runnsjö: Mater. Sci. Technol., 1985, vol. 1, pp. 728–31.

    CAS  Google Scholar 

  24. A. Ul-Haq, H. Weiland, and H. Bunge: J. Mater. Sci., 1994, vol. 29, pp. 2168–76.

    Article  Google Scholar 

  25. A. Ul-Haq, H. Weiland, and H. Bunge: Mater. Sci. Technol., 1994, vol. 10, pp. 289–98.

    CAS  Google Scholar 

  26. R. Hill: Proc. Phys. Soc., 1952, vol. A65, pp. 349–54.

    Google Scholar 

  27. A. Mateo, L. Llanes, L. Itugoyen, and M. Anglada: Acta Mater., 1996, vol. 44, pp. 1143–53.

    Article  CAS  Google Scholar 

  28. T.P. Kruml, J. Polak, J. Obrtlik, and S. Degallaix: Acta Mater., 1997, vol. 45, pp. 5145–51.

    Article  CAS  Google Scholar 

  29. J. Polak, T. Kruml, and S. Degallaxi: Scripta Metall., 1993, vol. 29, pp. 1553–58.

    Article  CAS  Google Scholar 

  30. E. Macherauch: Exp. Mech., 1966, vol. 6, pp. 140–53.

    Article  Google Scholar 

  31. H. Mughrabi: in Dislocations and Properties of Real Materials, M.H. Loretto, ed., The Institute of Metals, London, 1984, pp. 244–62.

    Google Scholar 

  32. Z. Wang and H. Margolin: Acta Metall., 1986, vol. 34, pp. 721–33.

    Article  CAS  Google Scholar 

  33. M. McClinton and J.B. Cohen: Mater. Sci. Eng., 1982, vol. 56, pp. 259–63.

    Article  Google Scholar 

  34. I.C. Noyan and J.B. Cohen: Mater. Sci. Eng., 1985, vol. 75, pp. 179–93.

    Article  Google Scholar 

  35. G. Wahlberg and G.L. Dunlop: Proc. Stainless Steels ’87, Institute of Metals, London, 1987, pp. 291–99.

    Google Scholar 

  36. J.-O. Nilsson: Scripta Metall., 1983, vol. 17, pp. 593–96.

    Article  CAS  Google Scholar 

  37. B.E. Warren: X-ray Diffraction, Addison-Wesley, Reading, MA, 1969, pp. 251–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, J., Odén, M. Load sharing between austenite and ferrite in a duplex stainless steel during cyclic loading. Metall Mater Trans A 31, 1557–1570 (2000). https://doi.org/10.1007/s11661-000-0166-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0166-3

Keywords

Navigation