Skip to main content
Log in

An approach for complete 2-D analytical potential modelling of fully depleted symmetric double gate junction less transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel 2-D analytical potential model of source and drain region along with channel for a fully depleted symmetric double gate junction less transistor is presented in this paper. The boundary conditions for channel potential along the channel length is taken considering source and drain region and boundary conditions for source and drain potential model are derived from channel longitudinal potential expression. The potential model is validated using TCAD simulations. A method for scale length determination is also presented. Scale length expression is obtained from the transverse electrostatic potential expression. Scale length variation with silicon layer thickness and gate oxide thickness is shown. The dependence of Scale length on the dielectric constant is also shown for the three dielectrics—“\(\hbox {SiO}_2 \)”, “\(\hbox {Al}_2 \hbox {O}_3 \)” and “\(\hbox {HfO}_2 \)”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.-P.: Junctionless multigate field effect transistor. Appl. Phys. Lett. 94, 053511 (2009)

    Article  MATH  Google Scholar 

  2. Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903 (2011)

    Article  Google Scholar 

  3. Colinge, J.P., Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.-M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  4. Solankia, T., Parmar, N.: A review paper: a comprehensive study of junctionless transistor. In: National Conference on Recent Trends in Engineering & Technology, 13–14 May 2011

  5. Nazarov, A., Colinge, J.P., Balestra, F., et al.: Semiconductor-on-insulator Materials for Nanoelectronics Applications. Springer, New York (2011)

    Book  Google Scholar 

  6. Colinge, J.P.: Junctionless transistors. In: IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK) (2012)

  7. Gnudi, A., Susanna, R., Elena, G., Giorgio, B.: Analysis of threshold voltage variability due to random dopant fluctuations in junctionless FETs. IEEE Electron Dev. Lett. 33(3), 336–338 (2012)

    Article  Google Scholar 

  8. Lou, H., Zhang, L., Zhu, Y., Lin, X., Yang, S., He, J., Chan, M.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Dev. 59(7), 1829–1836 (2012)

    Article  Google Scholar 

  9. Duarte, J.P., Kim, M.-S., Choi, S.-J., Choi, Y.-K.: A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistors. IEEE Trans. Electron Dev. 59(4), 1008–1012 (2012)

    Article  MATH  Google Scholar 

  10. Gnudi, A., Reggiani, S., Gnani, E., Baccarani, G.: Semi analytical model of the subthreshold current in short-channel junctionless symmetric double-gate field-effect transistors. IEEE Trans. Electron Devices 60(4) (2013)

  11. Cong, L., Yiqi, Z., Shaoyan, D., Ru, H.: Subthreshold behaviour models for nanoscale, short-channel junctionless cylindrical surrounding-gate MOSFETs. IEEE Trans. Electron Devices 60(11) (2013)

  12. Holtij, T., Schwarz, M., Kloes, A., Iñíguez, B.: 13th International Conference on ULIS, 2D Analytical Potential Modelling of Junctionless DG MOSFETs in Subthreshold Region Including Proposal for Calculating the Threshold Voltage, pp. 81–84 (2012)

  13. Chiang, T.-K.: A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans. Electron Devices 59(9), 2284–2289 (2012)

    Article  Google Scholar 

  14. Chiang, T.-K.: A new quasi-2-D threshold voltage model for short channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 59(11), 3127–3129 (2012)

    Article  Google Scholar 

  15. Trevisoli, R.D., Doria, R.T., de Souza, M., Das, S., Ferain, I., Pavanello, M.A.: Surface potential based drain current analytical model for triple gate junctionless nanowire transistors. IEEE Trans. Electron Devices 59(11), 3510–3518 (2012)

    Article  Google Scholar 

  16. Yan, R.H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron Devices 39(7), 1704 (1992)

    Article  Google Scholar 

  17. Colinge, J.-P.: Multiple-gate SOI MOSFETs. Solid-State Electron. 48, 897–905 (2004)

    Article  Google Scholar 

  18. Colinge, J.P.: The new generation of SOI MOSFETs. Rom. J. Inf. Sci. Technol. 11(1), 3–15 (2008)

    Google Scholar 

  19. Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs. IEEE Electron Device Lett. 18, 74 (1997)

    Article  Google Scholar 

  20. Colinge, J.P., Colinge, C.A.: Physics of Semiconductor Devices, Kluwer Academic Publishers, New York, ISBN: 0-306-47622-3 (2002)

  21. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, American Mathematical Society, Providence, ISBN:978-0-8218-8328-0 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Chandra Deva Sarma.

Appendix

Appendix

This appendix shows how (5) can be obtained from (4).

At \(y=\frac{t_{Si} }{2}\), from (4),

$$\begin{aligned}&\phi (x,y)=\phi _s =\phi _0 (x)+\frac{\in _{ox} }{t_{Si} \in _{Si} t_{ox} }(\phi _{gs} -\phi _s )\frac{t_{Si} }{4}^{2}\nonumber \\&\phi _s (1+\frac{\in _{ox} t_{Si} }{4\in _{Si} t_{ox} })=\phi _0 (x)+\frac{\in _{ox} t_{Si} }{4\in _{Si} t_{ox} }\phi _{gs}\nonumber \\&\phi _s (\frac{4\in _{Si} t_{ox} +\in _{ox} t_{Si} }{4\in _{Si} t_{ox} })=\phi _0 (x)+\frac{\in _{ox} t_{Si} }{4\in _{Si} t_{ox} }\phi _{gs}\nonumber \\&\hbox {Or, }\phi _s =\phi _0 (x)\frac{4\in _{Si} t_{ox} }{4\in _{Si} t_{ox} \!+\!\in _{ox} t_{Si} }+\frac{\in _{ox} t_{Si} }{4\in _{Si} t_{ox} +\in _{ox} t_{Si} }\phi _{gs}\nonumber \\ \end{aligned}$$
(15)

From (15) putting \(\phi _s \) in (4),

$$\begin{aligned} \phi (x,y)=\phi _0 (x)+\frac{4\in _{ox} }{t_{Si} (4t_{ox} \in _{Si} +t_{Si} \in _{ox} )}\{\phi _{gs} -\phi _0 (x)\}y^{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra Deva Sarma, K., Sharma, S. An approach for complete 2-D analytical potential modelling of fully depleted symmetric double gate junction less transistor. J Comput Electron 14, 717–725 (2015). https://doi.org/10.1007/s10825-015-0700-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0700-6

Keywords

Navigation