Skip to main content
Log in

Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The wetting time of porous electrodes with electrolytes based on organic solvents and ionic liquids, respectively, was investigated with two different techniques: with a tensiometer and by impedance spectroscopy. The results of this study showed that the wetting time of a porous electrode with ionic liquid-based electrolytes is up to 20 times longer than that with electrolytes comprising organic solvents. A significant reduction in the wetting time with ionic liquid-based electrolytes could be achieved by adding organic solvents. This effect can be explained by the interplay of reduced viscosity, increased surface tension and change in contact angle caused by the addition of the organic solvent, with the lower viscosity being the main driver of improved wetting kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van Schalkwijk WA, Scrosati B (2002) Advances in Lithium-Ion Batteries. Kluwer Academic/Plenum Publishers, Dutch

    Book  Google Scholar 

  2. Nazri GA, Pistoia G (2004) Lithium Batteries. Kluwer Academic Publishers, Dutch

    Google Scholar 

  3. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  4. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  5. Saint J, Best AS, Hollenkamp AF, Kerr J, Shin JH, Doeff MM (2008) Compatibility of LixTiyMn1−yO2 (y = 0, 0.11) electrode materials with pyrrolidinium-based ionic liquid electrolyte systems. J Electrochem Soc 155:A172–A180

    Article  CAS  Google Scholar 

  6. Egashira M, Kanetomo A, Yoshimoto N, Morita M (2011) Charge-discharge rate of spinel lithium manganese oxide and olivine lithium iron phosphate in ionic liquid-based electrolytes. J Power Sources 196:6419–6424

    Article  CAS  Google Scholar 

  7. Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, De Meatza I, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J Power Sources 196:9719–9730

    Article  CAS  Google Scholar 

  8. Reiter J, Nádherná M, Dominko R (2012) Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sources 205:402–407

    Article  CAS  Google Scholar 

  9. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  10. Wu MS, Liao TL, Wang YY, Wan CC (2004) Assessment of the wettability of porous electrodes for lithium-ion batteries. J Appl Electrochem 34:797–805

    Article  CAS  Google Scholar 

  11. Stefan CS, Lemordant D, Claude-Montigny B, Violleau D (2009) Are ionic liquids based on pyrrolidinium imide able to wet separators and electrodes used for Li-ion batteries? J Power Sources 189:1174–1178

    Article  CAS  Google Scholar 

  12. Dahbi M, Violleau D, Ghamouss F, Jacquemin J, Tran-Van F, Lemordant D, Anouti M (2012) Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and Celgard separator. Ind Eng Chem Res 51:5240–5245

    Article  CAS  Google Scholar 

  13. Chagnes A, Diaw M, Carré B, Willmann P, Lemordant D (2005) Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J Power Sources 145:82–88

    Article  CAS  Google Scholar 

  14. Choi JA, Shim EG, Scrosati B, Kim DW (2010) Mixed electrolytes of organic solvents and ionic liquid for rechargeable lithium-ion batteries. Bull Korean Chem Soc 31:3190–3194

    Article  CAS  Google Scholar 

  15. Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH (2010) Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim Acta 55:5204–5209

    Article  CAS  Google Scholar 

  16. Lane GH, Best AS, MacFarlane DR, Forsyth M, Bayley PM, Hollenkamp AF (2010) The electrochemistry of lithium in ionic liquid/organic diluent mixtures. Electrochim Acta 55:8947–8952

    Article  CAS  Google Scholar 

  17. Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sources 195:845–852

    Article  CAS  Google Scholar 

  18. Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A (2011) Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochem Acta 56:4092–4099

    Article  Google Scholar 

  19. Lundblad A, Bergman B (1997) Determination of contact angle in porous molten-carbonate fuel-cell electrodes. J Electrochem Soc 144:984–987

    Article  CAS  Google Scholar 

  20. Lucas R (1918) Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid Z 23:15–22

    Article  CAS  Google Scholar 

  21. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  22. Cai J, Yu B (2011) A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp Porous Med 89:251–263

    Article  CAS  Google Scholar 

  23. Fries N, Dreyer M (2008) An analytic solution of capillary rise restrained by gravity. J Colloid Interface Sc 320:259–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Muenster, the Ministry of Innovation, Science and Research of North Rhine-Westphalia (MIWF) within the project “Superkondensator und Lithium-Ionen-Hybrid-Superkondensatoren auf der Basis ionischer Flüssigkeiten” and the Federal Ministry of Education and Research (BMBF) within the project “Neue Lithium-Gelpolymerelektrolyte basierend auf neu synthetisierten Homo- und Block-Copolymeren” (project number 03SF0390) for the financial support. Furthermore, we would like to thank Xin Qi for carrying out the Hg porosimetry measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra Lex-Balducci or Andrea Balducci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnel, RS., Obeidi, S., Lübke, M. et al. Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid. J Appl Electrochem 43, 697–704 (2013). https://doi.org/10.1007/s10800-013-0558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0558-x

Keywords

Navigation